The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION
 ALGEBRA 2/ TRIGONOMETRY

Friday, June 17, 2016 - 9:15 a.m. - 12:15 p.m. SAMPLE RESPONSE SET

Table of Contents

Question 28 2

Question 29 8
Question 30 12
Question 31 19
Question 32 24
Question 33 31
Question 34 35
Question 35 . 41
Question 36 48
Question 37 58
Question 38 68
Question 39 77

Question 28

28 Factor $6 x^{3}+33 x^{2}-63 x$ completely.

$$
\begin{aligned}
& 3 x\left(2 x^{2}+11 x-21\right) \\
& 3 x(2 x-3)(x+7)
\end{aligned}
$$

Score: 2 The student gave a complete and correct response.

Question 28

28 Factor $6 x^{3}+33 x^{2}-63 x$ completely.

$$
\begin{aligned}
& 3 x\left(2 x^{2}+11 x-21\right) \quad a c=-42<_{-3}^{14} \\
& 3 x\left(2 x^{2}+14 x-3 x-21\right) \\
& 3 x\left(2 x^{2}+14 x\right)(-3 x-21) \\
& 3 x \quad 2 x(x+1)-3(x+7) \\
& 3 x(2 x-3)(x+7)
\end{aligned}
$$

Score: 2 The student gave a complete and correct response.

Question 28

28 Factor $6 x^{3}+33 x^{2}-63 x$ completely.

$$
\begin{aligned}
& x^{2}+11 x-42 \\
& (x+14)(x-3) \\
& (2 x+14)(2 x-3) \\
& (x+7)(2 x-3)
\end{aligned}
$$

Score: 1 The student made an error by treating the expression as an equation.

Question 28

28 Factor $6 x^{3}+33 x^{2}-63 x$ completely.

$$
\begin{aligned}
& 3 x\left(2 x^{2}+11 x-21\right) \\
& 3 x(2 x+7)(x-3)
\end{aligned}
$$

Score: 1 The student made one factoring error.

Question 28

28 Factor $6 x^{3}+33 x^{2}-63 x$ completely.

$$
3 x\left(2 x^{2}+11 x-21\right)
$$

Score: 1 The student did not factor completely.

Question 28

28 Factor $6 x^{3}+33 x^{2}-63 x$ completely.

$$
\begin{gathered}
\beta(7))\left(2\left(7^{2}\right)+11(7)-21\right. \\
21(98)+77-21 \\
2088+77-21 \\
2114 \neq 0
\end{gathered}
$$

Score: $\mathbf{0}$ The student factored incorrectly and treated the expression as an equation.

29 Five thousand dollars is invested at an interest rate of 3.5% compounded quarterly. No money is deposited or withdrawn from the account. Using the formula below, determine, to the nearest cent, how much this investment will be worth in 18 years.

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

$A=$ amount
$P=$ principal
$r=$ interest rate
$n=$ number of times the interest rate compounded annually
$t=$ time in years

Score: 2 The student gave a complete and correct response.

29 Five thousand dollars is invested at an interest rate of 3.5% compounded quarterly. No money is deposited or withdrawn from the account. Using the formula below, determine, to the nearest cent, how much this investment will be worth in 18 years.

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

$A=$ amount
$P=$ principal
$r=$ interest rate
$n=$ number of times the interest rate compounded annually
$t=$ time in years

Score: 1 The student did not divide 0.035 by 4 to get the quarterly rate.

Question 29

29 Five thousand dollars is invested at an interest rate of 3.5% compounded quarterly. No money is deposited or withdrawn from the account. Using the formula below, determine, to the nearest cent, how much this investment will be worth in 18 years.

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

$A=$ amount
$P=$ principal
$r=$ interest rate
$n=$ number of times the interest rate compounded annually
$t=$ time in years

$$
\begin{aligned}
& A=5,000\left(1+\frac{.035}{4}\right)^{18} \\
& A=588.890 \\
& A=5,848.895519 \\
& A=\$ 5,848.90
\end{aligned}
$$

Score: 1 The student did not multiply the number of years by 4 .

29 Five thousand dollars is invested at an interest rate of 3.5% compounded quarterly. No money is deposited or withdrawn from the account. Using the formula below, determine, to the nearest cent, how much this investment will be worth in 18 years.

$$
\begin{aligned}
& \quad A=P\left(1+\frac{r}{n}\right)^{n t} \\
& A=\text { amount } \\
& P=\text { principal } \\
& r=\text { interest rate } \\
& n=\text { number of times the interest rate compounded annually } \\
& t=\text { time in years }
\end{aligned}
$$

$$
5069,883,615.22
$$

Score: $\mathbf{0}$ The student gave a completely incorrect response.

Question 30

30 A colony of bacteria grows exponentially. The table below shows the data collected daily.

Day (x)	Population (y)
0	200
1	425
2	570
3	800
4	1035
5	1650
6	2600

State the exponential regression equation for the data, rounding all values to the nearest hundredth.

$$
\begin{aligned}
& a=239.21 \\
& b=1.48 \\
& y=239.21(1.48)^{x}
\end{aligned}
$$

Score: 2 The student gave a complete and correct response.

Question 30

30 A colony of bacteria grows exponentially. The table below shows the data collected daily.

Day (x)	Population (y)
0	200
1	425
2	570
3	800
4	1035
5	1650
6	2600

State the exponential regression equation for the data, rounding all values to the nearest hundredth.

$$
\begin{aligned}
& y=a * b \wedge x \\
& a=239.21 \quad b=1.48
\end{aligned}
$$

Score: 2 The student gave a complete and correct response.

Question 30

30 A colony of bacteria grows exponentially. The table below shows the data collected daily.

Day (x)	Population (y)
0	200
1	425
2	570
3	800
4	1035
5	1650
6	2600

State the exponential regression equation for the data, rounding all values to the nearest hundredth.

Score: 1 The student wrote an incorrect exponential regression equation. [The student may have not cleared the frequency on the exponential regression screen on the calculator after doing question number 25.]

30 A colony of bacteria grows exponentially. The table below shows the data collected daily.

Day (x)	Population (y)
0	200
1	425
2	570
3	800
4	1035
5	1650
6	2600

State the exponential regression equation for the data, rounding all values to the nearest hundredth.

$$
239.21(1.48)^{x}
$$

Score: 1 The student wrote an expression instead of an equation.

Question 30

30 A colony of bacteria grows exponentially. The table below shows the data collected daily.

Day (x)	Population (y)
0	200
1	425
2	570
3	800
4	1035
5	1650
6	2600

State the exponential regression equation for the data, rounding all values to the nearest hundredth.

$$
\begin{aligned}
& y=a b^{x} \\
& a=239.2 \\
& b=1.5 \\
& y=[(239.2)(1.5)]
\end{aligned}
$$

Score: 0 The student rounded both values to the nearest tenth and made a conceptual error when writing the equation.

Question 30

30 A colony of bacteria grows exponentially. The table below shows the data collected daily.

Day (x)	Population (y)
0	200
1	425
2	570
3	800
4	1035
5	1650
6	2600

State the exponential regression equation for the data, rounding all values to the nearest hundredth.

$$
\begin{aligned}
a= & 239.211 \\
b= & 1.481 \\
& 239.211(1.481)^{x}
\end{aligned}
$$

Score: 0 The student rounded incorrectly and wrote an expression instead of an equation.

Question 30

30 A colony of bacteria grows exponentially. The table below shows the data collected daily.

Day (x)	Population (y)
0	200
1	425
2	570
3	800
4	1035
5	1650
6	2600

State the exponential regression equation for the data, rounding all values to the nearest hundredth.

$$
\begin{aligned}
& y=a x+b \\
& a=361.25 \\
& b=-43.75 \\
& y=361.25 x-43.75
\end{aligned}
$$

Score: 0 The student made an error by finding a linear regression.

Question 31

31 Express $\frac{2+\frac{6}{x-3}}{\frac{x}{x-3}}$ in simplest form, when $x \neq 0$ and $x \neq 3$.

$\frac{2 x}{x}=$ 2

Score: 2 The student gave a complete and correct response.

Question 31

31 Express $\frac{2+\frac{6}{x-3}}{\frac{x}{x-3}}$ in simplest form, when $x \neq 0$ and $x \neq 3$.

Score: 2 The student gave a complete and correct response.

Question 31

31 Express $\frac{2+\frac{6}{x-3}}{\frac{x}{x-3}}$ in simplest form, when $x \neq 0$ and $x \neq 3$.

Score: 1 The student made an error by not multiplying both terms of the numerator by $(x-3)$.

Question 31

31 Express $\frac{2+\frac{6}{x-3}}{\frac{x}{x-3}}$ in simplest form, when $x \neq 0$ and $x \neq 3$.

$\frac{2 x}{x}$

Score: 1 The student did not simplify completely.

Question 31

31 Express $\frac{2+\frac{6}{x-3}}{\frac{x}{x-3}}$ in simplest form, when $x \neq 0$ and $x \neq 3$.

Score: 0 The student made an error by not multiplying both terms of the numerator by $(x-3)$ and stated the final answer as an equation.

Question 32

32 A central angle whose measure is $\frac{2 \pi}{3}$ radians intercepts an arc with a length of 4π feet. Find the radius of the circle, in feet.

Score: 2 The student gave a complete and correct response.

Question 32

32 A central angle whose measure is $\frac{2 \pi}{3}$ radians intercepts an arc with a length of 4π feet. Find the radius of the circle, in feet.

$$
\begin{gathered}
\frac{2 \pi}{3} \cdot r=4 \pi \\
\frac{k}{3}=2 \\
1=6
\end{gathered}
$$

Score: 2 The student gave a complete and correct response.

Question 32

32 A central angle whose measure is $\frac{2 \pi}{3}$ radians intercepts an arc with a length of 4π feet. Find the radius of the circle, in feet.

$$
\begin{aligned}
\frac{2(180)}{3}=120 \quad \frac{120}{360} & =\frac{2}{2 \pi r} \\
\frac{1}{3} & =\frac{2}{r} \\
r & =6
\end{aligned}
$$

Score: 2 The student gave a complete and correct response.

Question 32

32 A central angle whose measure is $\frac{2 \pi}{3}$ radians intercepts an arc with a length of 4π feet. Find the radius of the circle, in feet.

$24 \pi^{2}=4 \pi^{2} \mu$

$$
6=r
$$

Score: 2 The student gave a complete and correct response.

Question 32

32 A central angle whose measure is $\frac{2 \pi}{3}$ radians intercepts an arc with a length of 4π feet. Find the radius of the circle, in feet.

Score: 1 The student made an error by dividing $\frac{2 \pi}{3}$ by 4π.

Question 32

32 A central angle whose measure is $\frac{2 \pi}{3}$ radians intercepts an arc with a length of 4π feet. Find the radius of the circle, in feet.

$$
\frac{2}{3}=r
$$

Score: 1 The student made an error when dividing by $\frac{2 \pi}{3}$.

Question 32

32 A central angle whose measure is $\frac{2 \pi}{3}$ radians intercepts an arc with a length of 4π feet. Find the radius of the circle, in feet.

Score: 0 The student made an error by interchanging the arc length and angle measure, and then made an error when dividing by 4π.

Question 33

33 A sine function is graphed below.

$$
\frac{4 \pi+}{2}+\frac{\pi}{2}=\frac{5 \pi}{2}
$$

Determine and state the amplitude and period of this function.

Score: 2 The student gave a complete and correct response.

Question 33

33 A sine function is graphed below.

Determine and state the amplitude and period of this function.
1.5

Score: 1 The student stated an incorrect period.

Question 33

33 A sine function is graphed below.

Determine and state the amplitude and period of this function.

$$
\begin{aligned}
\text { AMPLITUDE } & =4 \\
\text { PERIOD } & =2 \pi
\end{aligned}
$$

Score: 1 The student stated an incorrect amplitude.

Question 33

33 A sine function is graphed below.

Determine and state the amplitude and period of this function.

Score: 0 The student stated an incorrect amplitude and period.

Question 34

34 On the Algebra 2/Trigonometry midterm at Champion High School, the scores of 210 students were normally distributed with a mean of 82 and a standard deviation of 4.2. Determine how many students scored between 79.9 and 88.3.

Score: 2 The student gave a complete and correct response.

Question 34

34 On the Algebra 2/Trigonometry midterm at Champion High School, the scores of 210 students were normally distributed with a mean of 82 and a standard deviation of 4.2.
Determine how many students scored between 79.9 and 88.3.

$$
\text { 13, } \begin{aligned}
104 & =100 x \\
x & =13 \mid \text { Students }
\end{aligned}
$$

Score: 2 The student gave a complete and correct response.

Question 34

34 On the Algebra 2/Trigonometry midterm at Champion High School, the scores of 210 students were normally distributed with a mean of 82 and a standard deviation of 4.2.
Determine how many students scored between 79.9 and 88.3.

$$
\begin{gathered}
210 * \text { normal cd } f(79.9,88.3,82,4.2) \\
131.1774002
\end{gathered}
$$

$$
\approx 131
$$

Score: 2 The student gave a complete and correct response.

Question 34

34 On the Algebra 2/Trigonometry midterm at Champion High School, the scores of 210 students were normally distributed with a mean of 82 and a standard deviation of 4.2.
Determine how many students scored between 79.9 and 88.3.

Score: 1 The student did not determine the number of students.

Question 34

34 On the Algebra 2/Trigonometry midterm at Champion High School, the scores of 210 students were normally distributed with a mean of 82 and a standard deviation of 4.2.
Determine how many students scored between 79.9 and 88.3.

$.68(210)$
142 stu dents

Score: 1 The student made an error in finding the percentage.

Question 34

34 On the Algebra 2/Trigonometry midterm at Champion High School, the scores of 210 students were normally distributed with a mean of 82 and a standard deviation of 4.2. Determine how many students scored between 79.9 and 88.3.

Score: $\mathbf{0}$ The student made an error in calculating the percentage and did not round appropriately.

Question 35

35 Given $\tan \theta=-\frac{5}{12}$ and $\frac{\pi}{2}<\theta<\pi$, determine the exact value of the expression $\sin \theta \cot \theta$.

Soheouthta

$$
\frac{\sin }{\cos }=-\frac{5}{12}
$$

$\sin \left(\frac{(\operatorname{cose} \theta}{\pi n \theta}\right)$

$$
\begin{aligned}
& \left(\frac{5}{13}\right) \frac{\frac{-12}{12}}{\frac{51}{13}}\left(\frac{18}{5}\right) \\
& \left(\frac{5}{13}\right)\left(\frac{-12}{5}\right)=\frac{-60}{65}
\end{aligned}
$$

Score: 2 The student gave a complete and correct response.

Question 35

35 Given $\tan \theta=-\frac{5}{12}$ and $\frac{\pi}{2}<\theta<\pi$, determine the exact value of the expression $\sin \theta \cot \theta$.

$$
\begin{aligned}
& \tan \theta=-\frac{5}{12} \\
& \theta=\tan ^{-1}\left(-\frac{5}{12}\right) \\
& \quad(\theta=157.3801351)
\end{aligned}
$$

$\sin \theta \cot \theta=-0.9230769231$

$$
=-0 . \overline{923076}
$$

Score: 2 The student gave a complete and correct response.

Question 35

35 Given $\tan \theta=-\frac{5}{12}$ and $\frac{\pi}{2}<\theta<\pi$, determine the exact value of the expression $\sin \theta \cot \theta$.

$$
\tan \theta=\frac{-5}{12} \text { and } \frac{\pi}{2}<\theta<\pi
$$

$$
\begin{aligned}
& \sin \theta \cot \theta \\
& \left(\frac{-5}{13}\right)\left(\frac{-12}{-5}\right)\left(\frac{60}{-65}\right)
\end{aligned}
$$

Score: 1 The student made an error by placing the angle in Quadrant III.

Question 35

35 Given $\tan \theta=-\frac{5}{12}$ and $\frac{\pi}{2}<\theta<\pi$, determine the exact value of the expression $\sin \theta \cot \theta$.

$$
\begin{aligned}
& \sin \theta=\frac{5}{13} \\
& \cot =\frac{-12}{5}
\end{aligned}
$$

Score: 1 The student made an error by not finding the product.

35 Given $\tan \theta=-\frac{5}{12}$ and $\frac{\pi}{2}<\theta<\pi$, determine the exact value of the expression $\sin \theta \cot \theta$.

$$
\left(-\frac{5}{13}\right)\left(-\frac{12}{5}\right)=\frac{60}{65}
$$

Score: 1 The student labeled the triangle incorrectly.

Question 35

35 Given $\tan \theta=-\frac{5}{12}$ and $\frac{\pi}{2}<\theta<\pi$, determine the exact value of the expression $\sin \theta \cot \theta$.

$$
\sin \theta \cot \theta
$$

$$
\text { cot }=1 /+a .0=1 /-5 / 12
$$

$$
\begin{aligned}
& (5 / 13)\left(\frac{1}{-5 / 2}\right) \\
& (5 / 13)(-2 / 5)
\end{aligned}
$$

$$
-10 / 65 \longleftarrow G C F=5
$$

$$
-\frac{2}{13}
$$

.15

Score: $\mathbf{0}$ The student made a transcription error when expressing cot θ and did not express the exact value as the final answer.

Question 35

35 Given $\tan \theta=-\frac{5}{12}$ and $\frac{\pi}{2}<\theta<\pi$, determine the exact value of the expression $\sin \theta \cot \theta$.

$$
\begin{aligned}
& \theta=\tan ^{-1}(-5 / 12) \\
& \theta=-22.61986495 \\
& (\sin (-22.619 \ldots))(1 / \sin (-22.619 \ldots)) \\
& 1
\end{aligned}
$$

Score: $\mathbf{0}$ The student gave a completely incorrect response.

Question 36

36 The lengths of the sides of a triangle are $6 \mathrm{~cm}, 11 \mathrm{~cm}$, and 7 cm . Determine, to the nearest tenth of a degree, the measure of the largest angle of the triangle.

Score: 4 The student gave a complete and correct response.

Question 36

36 The lengths of the sides of a triangle are $6 \mathrm{~cm}, 11 \mathrm{~cm}$, and 7 cm . Determine, to the nearest tenth of a degree, the measure of the largest angle of the triangle.

$$
x=1 / 5.3769335
$$

$$
x \approx 115.4
$$

Score: $\mathbf{4}$ The student gave a complete and correct response.

Question 36

36 The lengths of the sides of a triangle are $6 \mathrm{~cm}, 11 \mathrm{~cm}$, and 7 cm . Determine, to the nearest tenth of a degree, the measure of the largest angle of the triangle.

Score: 3 The student made an error by dividing by 84 instead of -84 .

Question 36

36 The lengths of the sides of a triangle are $6 \mathrm{~cm}, 11 \mathrm{~cm}$, and 7 cm . Determine, to the nearest tenth of a degree, the measure of the largest angle of the triangle.

$11^{2}=6^{2}+7^{2}-2(6)(7) \cos A$
$121=85-84 \cos A$
$-85-85$
$\frac{36}{-84}=\frac{-84 \cos A}{-84}$

$$
\cos A=-.4285714286
$$

$$
A=2.01
$$

$$
A=2.0
$$

Score: 2 The student made an error by finding the measure of angle A in radians.

Question 36

36 The lengths of the sides of a triangle are $6 \mathrm{~cm}, 11 \mathrm{~cm}$, and 7 cm . Determine, to the nearest tenth of a degree, the measure of the largest angle of the triangle.

Score: 2 The student made a transcription error by using sine instead of cosine, and did not recognize that -25.4 is not a viable solution.

Question 36

36 The lengths of the sides of a triangle are $6 \mathrm{~cm}, 11 \mathrm{~cm}$, and 7 cm . Determine, to the nearest tenth of a degree, the measure of the largest angle of the triangle.

Score: 2 The student stated $\cos \theta=115.3$ and did not round properly.

Question 36

36 The lengths of the sides of a triangle are $6 \mathrm{~cm}, 11 \mathrm{~cm}$, and 7 cm . Determine, to the nearest tenth of a degree, the measure of the largest angle of the triangle.

Lan of Cosine

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos A \\
11^{2} & =7^{2}+6^{2}-2(7)(6) \cos x \\
121 & =49+36-84 \cos x \\
121 & =85-84 \cos x \\
36 & =-84 \cos x \\
-43 & =\cos x
\end{aligned}
$$

Score: 2 The student rounded prematurely and did not solve for x.

36 The lengths of the sides of a triangle are $6 \mathrm{~cm}, 11 \mathrm{~cm}$, and 7 cm . Determine, to the nearest tenth of a degree, the measure of the largest angle of the triangle.

Score: 1 The student made a correct substitution into the Law of Cosines.

Question 36

36 The lengths of the sides of a triangle are $6 \mathrm{~cm}, 11 \mathrm{~cm}$, and 7 cm . Determine, to the nearest tenth of a degree, the measure of the largest angle of the triangle.

$$
\begin{gathered}
6^{2}=7^{2}+1^{2}-2(7)(11) \cos x \\
36=49+121-154 \cos x \\
36=170-154 \cos x \\
\frac{-170-170}{\frac{-134}{-154}=\frac{-154 \cos x}{-154}} \\
\cos x=.8701298701 \\
x x=29.53^{\circ}
\end{gathered}
$$

Score: 1 The student made an error by finding the smallest angle and rounding incorrectly.

Question 36

36 The lengths of the sides of a triangle are $6 \mathrm{~cm}, 11 \mathrm{~cm}$, and 7 cm . Determine, to the nearest tenth of a degree, the measure of the largest angle of the triangle.

$\sin x=.2234 \ldots$

Score: 0 The student made an error by using the Law of Sines and treated the 7 as an angle.

Question 37

37 Solve algebraically for c :

$$
\begin{array}{r}
\left|\frac{3}{2} c-10\right|-9 \leq-1 \\
+9+9
\end{array}
$$

Score: 4 The student gave a complete and a correct response.

Question 37

37 Solve algebraically for c :

Score: 4 The student gave a complete and correct response.

Question 37

37 Solve algebraically for c :

$$
\begin{gathered}
\begin{array}{c}
\left|\frac{3}{2} c-10\right|-9 \leq-1 \\
\frac{3}{2} c-10 \\
+10
\end{array}+8 \quad 10 \geq c \geq 1 \cdot 3 \\
\frac{2}{3} \cdot \frac{3}{2} c \leq 18 \cdot \frac{2}{3} \\
c \leq 12 \\
\frac{3}{2} c-10 \geq-8 \\
+10+10 \\
\frac{2}{3} \cdot \frac{3}{2} c \geq 2 \cdot \frac{2}{3} \\
c \geq 1.3
\end{gathered}
$$

Score: 3 The student made an error by expressing $\frac{4}{3}$ as 1.3 instead of $1 . \overline{3}$.

Question 37

37 Solve algebraically for c :

$$
\begin{aligned}
&\left|\frac{3}{2} c-10\right|-9 \leq-1 \\
& \frac{3}{2} c-10-9 \leq-1 \\
& \frac{3}{2} c-19 \leq-1 \\
& \frac{3}{2} c \leq 18 \\
& c \leq 12 \\
&-\frac{3}{2} c+10-9 \leq-1 \\
&-\frac{3}{2} c+1 \leq-1 \\
&-\frac{3}{2} c \leq-2 \\
& \frac{3}{2} c \geq 2 \\
& c \geq 4 / 3
\end{aligned}
$$

Score: 3 The student made an error by not stating the solution as a conjunction.

Question 37

37 Solve algebraically for c :

$$
\begin{aligned}
& \left|\frac{3}{2} c-10\right|-9 \leq-1 \\
& +9 \div 9 \\
& \left|\frac{3}{2} c-1 \theta\right|<8 \\
& \frac{3}{2} c-10<8 \\
& \frac{-10+10}{\frac{3}{\frac{3}{2} c}<\frac{18}{\frac{3}{2}}} \\
& \begin{array}{r}
-\frac{3}{2} c+10<8 \\
-10-10
\end{array} \\
& \frac{-\frac{3}{2} c}{-\frac{3}{2}}<-\frac{-2}{3} \\
& c<12 \\
& c>1.33
\end{aligned}
$$

Score: 2 The student made an error when writing the inequality symbol and did not write the solution as a conjunction.

Question 37

37 Solve algebraically for c :

$$
\left|\frac{3}{2} c-10\right|-9 \leq-1
$$

$$
\begin{array}{l|l}
\left(\begin{array}{c}
\left.\frac{3}{2} c-10\right)-9 \leq-1 \\
+9
\end{array}\right. & \begin{array}{c}
\left(-\frac{3}{2} c+10\right)-9 \leq-1 \\
+9+9
\end{array} \\
\begin{array}{c}
\frac{3}{2} c-10 \leq 8 \\
+10
\end{array} & \begin{array}{c}
-\frac{3}{2} c+10 \leq 8 \\
-10 \\
-10 \\
\frac{2}{3} \\
\frac{3}{2} c \leq 18 \cdot \frac{2}{3}
\end{array} \\
c \leq 12 & \begin{array}{l}
\frac{2}{3}-\frac{3}{2} c \leq-2 \cdot-\frac{2}{3} \\
c \leq \frac{4}{3}
\end{array}
\end{array}
$$

Score: 2 The student did not reverse the inequality sign and did not write the solution as a conjunction.

Question 37

37 Solve algebraically for c :

$$
\begin{array}{r}
\left|\frac{3}{2} c-10\right|-9 \leq-1 \\
+9+9
\end{array}
$$

Score: 1 The student made a conceptual error by multiplying by $\frac{3}{2}$ and then did not state the solution as a conjunction.

Algebra 2/Trigonometry - June '16

Question 37

37 Solve algebraically for c :

$$
\begin{gathered}
\left|\frac{3}{2} c-10\right|-9 \leq-1 \\
+9+9 \\
\left|\frac{3}{2} c-10\right| \leq 8 \\
\frac{3}{2} c-10 \leq 8 \\
\frac{3}{2} \div \frac{3}{2} c \leq 18 \div \frac{3}{2} \\
c \leq 12
\end{gathered}
$$

Score: 1 The student made an error by only solving for $c \leq 12$.

Question 37

37 Solve algebraically for c :

$$
\left|\frac{3}{2} c-10\right|-9 \leq-1
$$

$$
3 / 2 c+10-9 \leq-7 \quad-3 / 2<-10-9 \leq-1
$$

$$
\begin{aligned}
& 3 / 2 c+1 \leq-1 \\
& -1
\end{aligned}
$$

$$
\begin{array}{r}
-3 / 2 c-19 \leq-1 \\
-19+19
\end{array}
$$

$$
\frac{-3 / 2 \leq \leq 18}{-3 / 2}
$$

$$
6 \leq-1 . \overline{3}
$$

$$
e \geq-12
$$

Score: 0 The student gave a completely incorrect response.

Question 37

37 Solve algebraically for c :

$$
\begin{aligned}
& \left|\frac{3}{2} c-10\right|-9 \leq-1 \\
& \left|\frac{3}{2} c-10\right| \leq 8 \\
& \frac{3}{2} c-10 \leq 8 \\
& \frac{3}{2} c \leq \frac{18}{3 / 2} \\
& c \leq 8 \cdot \frac{2}{3} \\
& c \leq \frac{16}{3} \\
& c \leq 5.3 \\
& c \leq 5.3
\end{aligned}
$$

Score: $\mathbf{0}$ The student attempted to solve only one inequality and made a transcription error.

Question 38

38 Solve $2 \cos ^{2} \theta=\cos \theta$ for all values of θ in the interval $0^{\circ} \leq \theta<360^{\circ}$.

Score: 4 The student gave a complete and correct response.

Question 38

38 Solve $2 \cos ^{2} \theta=\cos \theta$ for all values of θ in the interval $0^{\circ} \leq \theta<360^{\circ}$.

$$
\text { Let } u=\cos \theta
$$

$$
\begin{gathered}
2 u^{2}=u \\
-u-u \\
\hline 2 u^{2}-u=0
\end{gathered}
$$

$$
u(2 u-1)=0
$$

$$
u=0 \left\lvert\, \begin{gathered}
2 u-\chi=0 \\
+1+1 \\
\frac{2 u}{2}=\frac{1}{2} \\
u=1 / 2
\end{gathered}\right.
$$

$$
\begin{aligned}
& \cos \theta=0 \quad \cos \theta=1 / 2 \\
& \theta=90^{\circ}, 270^{\circ} \quad \theta=60^{\circ}, 300^{\circ}
\end{aligned}
$$

Score: 4 The student gave a complete and correct response.

Question 38

38 Solve $2 \cos ^{2} \theta=\cos \theta$ for all values of θ in the interval $0^{\circ} \leq \theta<360^{\circ}$.

Score: 3 The student made an error by stating 180° instead of 270°.

Question 38

38 Solve $2 \cos ^{2} \theta=\cos \theta$ for all values of θ in the interval $0^{\circ} \leq \theta<360^{\circ}$.

Score: 3 The student made a graphing error by graphing $\cos ^{2} \theta$ instead of $2 \cos ^{2} \theta$.

Question 38

38 Solve $2 \cos ^{2} \theta=\cos \theta$ for all values of θ in the interval $0^{\circ} \leq \theta<360^{\circ}$.

Score: 2 The student made a conceptual error by dividing both sides by $\cos \theta$.

Question 38

38 Solve $2 \cos ^{2} \theta=\cos \theta$ for all values of θ in the interval $0^{\circ} \leq \theta<360^{\circ}$.

$$
\cos =a
$$

$$
2 a^{2}-a=0
$$

$$
a(2 a-1)=0
$$

$$
a=0
$$

$$
\begin{gathered}
2 a-1=0 \\
+1+1 \\
\frac{2 a=1}{2}
\end{gathered}
$$

$$
a=\frac{1}{2}
$$

$$
\begin{array}{cc}
S \\
T & \cos \theta=\frac{1}{2}
\end{array}
$$

$$
Q_{1} \quad Q_{4}
$$

$$
60^{\circ} \quad 300^{\circ}
$$

Score: 2 The student did not use $a=0$.

Question 38

38 Solve $2 \cos ^{2} \theta=\cos \theta$ for all values of θ in the interval $0^{\circ} \leq \theta<360^{\circ}$.

$2 \cos ^{2} \theta-\cos \theta=0$ $\cos \theta(2 \cos \theta-1)=0$ $\cos \theta=0 \quad 2 \cos \theta-1=0$ $\cos \theta=0$ $\cos \theta=1 / 2$
$\theta=60^{\circ}$

$$
\theta=90^{\circ}
$$

Score: 2 The student only found the two angles.

Question 38

38 Solve $2 \cos ^{2} \theta=\cos \theta$ for all values of θ in the interval $0^{\circ} \leq \theta<360^{\circ}$.

Score: 1 The student made a conceptual error by dividing both sides by $\cos \theta$, and then only found the one angle.

Question 38

38 Solve $2 \cos ^{2} \theta=\cos \theta$ for all values of θ in the interval $0^{\circ} \leq \theta<360^{\circ}$.

$$
\begin{aligned}
2 \cos ^{2} \theta & =\cos \theta \\
2 \cos \theta & =1 \\
\cos \theta & =\frac{1}{2} \\
\cos \theta & =60^{\circ}
\end{aligned}
$$

Score: $\mathbf{0}$ The student made a conceptual error by dividing by $\cos \theta$ and then stated $\cos \theta=60$, and did not find 300 .

Question 39

39 Solve for p algebraically: $\log _{16}\left(p^{2}-p+4\right)-\log _{16}(2 p+11)=\frac{3}{4}$

$$
\begin{aligned}
& \log _{16} \frac{p^{2}-p+4}{2 p+11}=\frac{3}{4} \\
& L^{\frac{3}{4}}=\frac{p^{2}-p+4}{2 p+11} \\
&(2 p+11) 8=\frac{p^{2}-p+4}{2 p+11}(2 p+11) \\
& 16 p+88=p^{2}-p+4 \\
& \frac{-(6 p-18}{} \quad \frac{-16 p-88}{2} \\
& 0=p^{2}-17 p-84 \\
& 0=\left(p^{2}-21 p\right)(+4 p-84) \\
& 0=p(p-21)+4(p-21) \\
& 0=\frac{(p+4)(p-21)}{p+4-0) p-21=0} \\
& p=-4 \mid p=421 \\
& \hline-21
\end{aligned}
$$

Score: 6 The student gave a complete and correct response.

Question 39

39 Solve for p algebraically: $\log _{16}\left(p^{2}-p+4\right)-\log _{16}(2 p+11)=\frac{3}{4}$

$$
\log \frac{\left(p^{2}-x+4\right)}{(x+11)}=\frac{3}{4}
$$

$8-20+44=16+88$
$\rho^{p}-17-4=0$

$$
\begin{aligned}
& P=\frac{17 \pm \sqrt{17^{2}-4(-84)}}{2} \\
& P=\frac{17 \pm \sqrt{625}}{2} \\
& P=21 \quad P=-4
\end{aligned}
$$

Score: 6 The student gave a complete and correct response.

Question 39

39 Solve for p algebraically: $\log _{16}\left(p^{2}-p+4\right)-\log _{16}(2 p+11)=\frac{3}{4}$

$$
\begin{gathered}
\log _{16}\left(\frac{p^{2}-p+4}{2 p+11}\right)=\frac{3}{4} \\
16^{\frac{3}{2}}-\frac{p^{2}-p+4}{2 p+11} \\
16^{3}(2 p+11)=p^{2}-p p^{4} 4 \\
8(2 p+11)=p^{2}-p+4 \\
16 p+68=p^{2}-p+4 \\
0=p^{2}-17 p-84 \\
p^{2}-171-84=0 \\
(p-21)(p+4)=0 \\
x=21, p^{p}=-4
\end{gathered}
$$

Score: 5 The student made an error by rejecting $p=21$.

Question 39

39 Solve for p algebraically: $\log _{16}\left(p^{2}-p+4\right)-\log _{16}(2 p+11)=\frac{3}{4}$

$$
\begin{aligned}
& \log 16\left(\frac{p^{2}-p+4}{2 p+11}\right)=\frac{3}{4} \\
& 16{ }^{\frac{3}{4}}=\frac{p^{2}-p+4}{2 p+11} \\
& 8(2 p+11)=p^{2}-p+4 \\
& 2 p+11 \\
& 16 p+88=p^{2}-p+4 \\
& -p^{2}-p+16 p+88-4=0 \\
& p^{2}+p-16 p-88+4=0 \\
& p 2-15 p-84=0 \\
& p=\frac{15 \pm \sqrt{225}+336}{2}
\end{aligned}
$$

Score: 5 The student made a sign error when moving p to the other side of the equation.

Question 39

39 Solve for p algebraically: $\log _{16}\left(p^{2}-p+4\right)-\log _{16}(2 p+11)=\frac{3}{4}$

$$
\begin{gathered}
\log _{16} \frac{p^{2}-p+4}{2 p+11}=\frac{3}{4} \\
16^{3 / 4}=\frac{p^{2}-p+4}{2 p+11} \\
\left.(2 p+11) 8=\frac{p^{2}-p+4}{2 p+11}(2 p)+11\right) \\
2 p+88=p^{2}-p+4 \\
0=p^{2}-3 p-84 \\
x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(1)(-84)}}{2(1)} \\
x=\frac{3 \pm \sqrt{9+33 L}}{2} \\
x=\frac{3 \pm \sqrt{345}}{2} \quad x=\frac{3}{2} \pm \frac{\sqrt{345}}{2}
\end{gathered}
$$

Score: 4 The student made an error using the distributive property and did not reject $\frac{3}{2}-\frac{\sqrt{345}}{2}$.

Question 39

39 Solve for p algebraically: $\log _{16}\left(p^{2}-p+4\right)-\log _{16}(2 p+11)=\frac{3}{4}$

$$
\begin{aligned}
& \log _{16} \frac{p^{2}-p+4}{8^{2} p+11}=\frac{3}{4} \\
& \frac{p^{2}-p+4}{2 p+11}=16^{3 / 4}=(\sqrt[4]{16})^{3}=2^{3}=8 \\
& p^{2}-p+4=16 p+88 \\
& p^{2}-17 p-84=0 \\
& \varphi=\frac{17 \pm \sqrt{289-(-336)}}{2}
\end{aligned}
$$

Score: 4 The student made a correct substitution into the quadratic formula, but showed no further work.

Question 39

39 Solve for p algebraically: $\log _{16}\left(p^{2}-p+4\right)-\log _{16}(2 p+11)=\frac{3}{4}$
$+1 \pm-15$

$$
\begin{aligned}
\log _{16} \frac{p^{2}-p+4}{2 p+11} & =\frac{3}{4} \\
16^{\frac{3}{4}} & =\frac{p^{2}-p+4}{2 p+11} \\
16 p+88 & =p^{2}-p+4 \\
0 & =p^{2}-17 p-84
\end{aligned}
$$

Score: 3 The student wrote a correct quadratic equation.

Question 39

39 Solve for p algebraically: $\log _{16}\left(p^{2}-p+4\right)-\log _{16}(2 p+11)=\frac{3}{4}$

$$
\begin{aligned}
& \log _{16} p^{2}-3 p-7=\frac{3}{4} \\
& 16^{3 / 4}=p^{2}-3 p-7 \\
& 8=p^{2}-3 p-7 \\
& \frac{-8}{p^{2}-3 p-15=0} \\
& p=\frac{3 \pm \sqrt{(-3)^{2}-4 \cdot 1 \cdot(-15)}}{2 \cdot 1} \\
& p=\frac{3 \pm \sqrt{69}}{2}
\end{aligned}
$$

Score: 3 The student made a conceptual error by subtracting the polynomials instead of dividing them.

Question 39

39 Solve for p algebraically: $\log _{16}\left(p^{2}-p+4\right)-\log _{16}(2 p+11)=\frac{3}{4}$

$$
\log _{14} \frac{p^{2}-p+n}{2 p+11}=\frac{3}{4}
$$

Score: 2 The student stated the equation in exponential form, but did not obtain 21 by an algebraic method.

Question 39

39 Solve for p algebraically: $\log _{16}\left(p^{2}-p+4\right)-\log _{16}(2 p+11)=\frac{3}{4}$

$$
\begin{aligned}
\log _{16} \frac{\left(p^{2}-p+4\right)}{2 p+11} & =\frac{3}{4} \\
16^{\frac{3}{4}} & =\frac{\left(p^{2}-p+4\right)}{(2 p+11)}
\end{aligned}
$$

Score: 2 The student stated the equation correctly in exponential form.

Question 39

39 Solve for p algebraically: $\log _{16}\left(p^{2}-p+4\right)-\log _{16}(2 p+11)=\frac{3}{4}$

Score: 1 The student rewrote the log equation correctly.

Question 39

39 Solve for p algebraically: $\log _{16}\left(p^{2}-p+4\right)-\log _{16}(2 p+11)=\frac{3}{4}$

$$
\begin{aligned}
& \log _{16} \frac{2 p+11}{p^{2}-p+4}=\frac{3}{4} \\
& 16^{3 / 4}=\frac{2 p+11}{p^{2}-p+4} \\
& p^{2}-p+4(8)=\left(\frac{2 p+11}{p^{2}-p+4}\right) p^{2}-p+4 \\
& \begin{array}{l}
8 p^{2}-8 p+32=2 p+11 \\
-2 p-11-2 p-11
\end{array} \\
& \left(8 p^{2}-10 p\right)+21=0 \quad \begin{array}{c}
m=10 b^{8} \\
\alpha=10 \\
0
\end{array}
\end{aligned}
$$

Score: 1 The student made a conceptual error in rewriting the log equation, but did write an appropriate exponential equation.

Question 39

39 Solve for p algebraically: $\log _{16}\left(p^{2}-p+4\right)-\log _{16}(2 p+11)=\frac{3}{4}$
$\sqrt{2} \sqrt{16}=2=8$

$$
\begin{aligned}
16^{\frac{3}{4}}= & \left(p^{2}-p+4\right)(2 p+11) \\
16^{\frac{3}{4}}= & 2 p^{2}+11 p^{2}-2 p^{2}-11 p+8 p+44 \\
8= & 2 p^{3}+9 p^{2}-3 p+44 \\
-x^{2} & \frac{-8}{} \\
& 2 p^{3}+9 p^{2}-3 p+36
\end{aligned}=0 \quad \begin{aligned}
& p^{2}\left(2 p^{2}+q\right)-3(p+12)=0 \\
& p(2 p+3)(p-3)
\end{aligned}
$$

$$
\begin{aligned}
& 2 p^{3}+9 p^{2}-3 p+36=0 \\
& p^{2}\left(2 p^{2}+q\right)-3(p+12)=0 \\
& p(2 p+3)(p-3) \\
& \quad(-3+p)+(2 p+3)(p-3)(p+2)=0
\end{aligned}
$$

Score: $\mathbf{0}$ The student wrote a completely incorrect response. No credit is given for finding 8 .

Question 39

39 Solve for p algebraically: $\log _{16}\left(p^{2}-p+4\right)-\log _{16}(2 p+11)=\frac{3}{4}$

$$
\begin{aligned}
& 12=\frac{p^{2}-p+4}{3 p+11} \\
& 24 p+132=p^{2}-p+4 \\
& p^{2}-23 p-128=0 \\
& (p-32)(p+4)=0 \\
& p=-32 \text { or } p=-4
\end{aligned}
$$

Score: $\mathbf{0}$ The student made a conceptual error by evaluating $16\left(\frac{3}{4}\right)$ followed by several computational errors, a factoring error, and did not reject $p=-32$.

