The Unversity of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY

Wednesday, January 25, 2023 - 9:15 a.m. to 12:15 p.m., only

MODEL RESPONSE SET

Table of Contents

Question 25 2
Question 26 6
Question 27 12
Question 28 16
Question 29 24
Question 30 31
Question 31 36
Question 32 42
Question 33 50
Question 34 59
Question 35 66

Question 25

25 Using a compass and straightedge, construct the angle bisector of $\angle A B C$.
[Leave all construction marks.]

$$
\text { angle bisector of } \angle A B C \downarrow
$$

Score 2: The student gave a complete and correct response.

Question 25

25 Using a compass and straightedge, construct the angle bisector of $\angle A B C$. [Leave all construction marks.]

Score 2: The student gave a complete and correct response.

Question 25

25 Using a compass and straightedge, construct the angle bisector of $\angle A B C$. [Leave all construction marks.]

Score 1: The student constructed the bisector of angle A.

Question 25

25 Using a compass and straightedge, construct the angle bisector of $\angle A B C$. [Leave all construction marks.]

Score 0: The student gave a completely incorrect response.

Question 26

26 On the set of axes below, $\triangle A B C$ and $\triangle D E F$ are graphed.

Describe a sequence of rigid motions that would map $\triangle A B C$ onto $\triangle D E F$.
a rotation of 90° dockurse about point B and then a translation down 4 and to the right by 3

Score 2: The student gave a complete and correct response.

Question 26

26 On the set of axes below, $\triangle A B C$ and $\triangle D E F$ are graphed.

Describe a sequence of rigid motions that would map $\triangle A B C$ onto $\triangle D E F$.
First, rotate 90° clockwise, then translate one unit right and four units down.

Score 1: The student described an appropriate sequence of rigid motions, but the center of rotation was not stated.

Question 26

26 On the set of axes below, $\triangle A B C$ and $\triangle D E F$ are graphed.

Describe a sequence of rigid motions that would map $\triangle A B C$ onto $\triangle D E F$.

$$
\begin{aligned}
& \text { Rotate } 90^{\circ} \text { clockwise } \\
& \text { Truncate down so that } A \geqslant 1 \\
& B \rightarrow C \in F^{\circ}
\end{aligned}
$$

Score 1: The student described an appropriate sequence of rigid motions, but the description was incomplete.

Question 26

26 On the set of axes below, $\triangle A B C$ and $\triangle D E F$ are graphed.

Describe a sequence of rigid motions that would map $\triangle A B C$ onto $\triangle D E F$.

> a rotation counterciofinise 270° about point B a transtanon down 3 and right 4 units

Score 1: The student gave a correct description of the rotation, but gave an incorrect description of the translation.

Question 26

26 On the set of axes below, $\triangle A B C$ and $\triangle D E F$ are graphed.

Describe a sequence of rigid motions that would map $\triangle A B C$ onto $\triangle D E F$.
A rotation followed by a translation

Score 1: The student described an appropriate sequence, but the description was incomplete.

Question 26

26 On the set of axes below, $\triangle A B C$ and $\triangle D E F$ are graphed.

Describe a sequence of rigid motions that would map $\triangle A B C$ onto $\triangle D E F$.

$$
\begin{aligned}
& \text { A reflection over the line } y=x \text {, } \\
& \text { followed by a translation of right } 1 \text {. }
\end{aligned}
$$

Score 0: The student gave a completely incorrect description.

Question 27

27 As shown in the diagram below, a symmetrical roof frame rises 4 feet above a house and has a width of 24 feet.

Determine and state, to the nearest degree, the angle of elevation of the roof frame.

Score 2: The student gave a complete and correct response.

Geometry - Jan. '23

Question 27

27 As shown in the diagram below, a symmetrical roof frame rises 4 feet above a house and has a width of 24 feet.

Determine and state, to the nearest degree, the angle of elevation of the roof frame.

$$
\begin{aligned}
& \operatorname{TAN}(x)=\frac{4}{24} \\
& \operatorname{TAN} \\
& \\
& x=94^{\circ}\left(\frac{4}{24}\right)
\end{aligned}
$$

Score 1: The student wrote an incorrect trigonometric equation, but solved the equation correctly.

Question 27

27 As shown in the diagram below, a symmetrical roof frame rises 4 feet above a house and has a width of 24 feet.

Determine and state, to the nearest degree, the angle of elevation of the roof frame.

$$
\begin{array}{ll}
24 / 2=12 & \text { Tan }=\frac{0 p 8}{a d j} \\
& \operatorname{Tan}^{2} \frac{4}{12}=14.0362+4+7 \approx 14^{\circ}
\end{array}
$$

Score 1: The student wrote a correct trigonometric equation, but no further correct work was shown.

Question 27

27 As shown in the diagram below, a symmetrical roof frame rises 4 feet above a house and has a width of 24 feet.

Determine and state, to the hearest degred, the angle of elevation of the roof frame.

Score 0: The student gave a completely incorrect response.

Geometry - Jan. '23

Question 28

28 Directed line segment $A B$ has endpoints whose coordinates are $A(-2,5)$ and $B(8,-1)$. Determine and state the coordinates of P, the point which divides the segment in the ratio 3:2.
[The use of the set of axes below is optional.]

$$
K=\frac{3}{5}
$$

$$
\begin{aligned}
& P\left(x_{1}+K\left(x_{2}-x_{1}\right), y_{1}+K\left(x_{2}-x_{1}\right)\right) \\
& P\left(-2+\frac{3}{5}(8+2), 5+\frac{3}{5}(-1-5)\right) \\
& P(4,1.4)
\end{aligned}
$$

Score 2: The student gave a complete and correct response.

Question 28

28 Directed line segment $A B$ has endpoints whose coordinates are $A(-2,5)$ and $B(8,-1)$. Determine and state the coordinates of P, the point which divides the segment in the ratio 3:2.
[The use of the set of axes below is optional.]

$$
\begin{aligned}
& \text { Find } x:-2+\frac{3}{5}(8-(-2)=4) \\
& \text { Find } \left.y: 5+\frac{3}{5}(-1-5)=1.4\right) \quad P=(4,1.4)
\end{aligned}
$$

Score 2: The student gave a complete and correct response.

Question 28

28 Directed line segment $A B$ has endpoints whose coordinates are $A(-2,5)$ and $B(8,-1)$. Determine and state the coordinates of P, the point which divides the segment in the ratio 3:2.
[The use of the set of axes below is optional.]

$$
\begin{gathered}
\frac{3}{5}(10)=6 \left\lvert\, \frac{3}{5}(6)=3.6\right. \\
\frac{A(-2,5)}{4,-3.6} \\
\frac{4(4,1.4)}{}
\end{gathered}
$$

Score 2: The student gave a complete and correct response.

Question 28

28 Directed line segment $A B$ has endpoints whose coordinates are $A(-2,5)$ and $B(8,-1)$. Determine and state the coordinates of P, the point which divides the segment in the ratio 3:2.
[The use of the set of axes below is optional.]

$$
P=(4,1.4)
$$

Score 1: The student gave a correct answer, but no work was shown.

Question 28

28 Directed line segment $A B$ has endpoints whose coordinates are $A(-2,5)$ and $B(8,-1)$. Determine and state the coordinates of P, the point which divides the segment in the ratio 3:2.
[The use of the set of axes below is optional.]

Score 1: The student determined point P, but did not state it as a coordinate.

Question 28

28 Directed line segment $A B$ has endpoints whose coordinates are $A^{(}(-2,5)$ and $B(8,-1)$. Determine and state the coordinates of P, the point which divides the segment in the ratio 3:2.
[The use of the set of axes below is optional.]

Score 1: The student showed correct work to determine the x-coordinate of P, but made an error in determining the y-coordinate.

Question 28

28 Directed line segment $A B$ has endpoints whose coordinates are $A(-2,5)$ and $B(8,-1)$. Determine and state the coordinates of P, the point which divides the segment in the ratio 3:2.
[The use of the set of axes below is optional.]

Score 1: The student showed correct work to partition the line segment, but made an error in determining the y-coordinate.

Question 28

28 Directed line segment $A B$ has endpoints whose coordinates are $A(-2,5)$ and $B(8,-1)$. Determine and state the coordinates of P, the point which divides the segment in the ratio 3:2.
[The use of the set of axes below is optional.]

Score 0: The student graphed $\overline{A B}$ correctly, but no further correct work is shown.

Question 29

29 In $\triangle A B C, A B=5, A C=12$, and $\mathrm{m} \angle A=90^{\circ}$. In $\triangle D E F, \mathrm{~m} \angle D=90^{\circ}$, $D F=12$, and $E F=13$. Brett claims $\triangle A B C \cong \triangle D E F$ and $\triangle A B C \sim \triangle D E F$. Is Brett correct? Explain why.
Yes, through the
pythagorean theorem
I proved that the triangles 12 C have \cong sides making $S^{2}+12^{2}=c^{2}$ them \cong ant \sim through $25+144=c^{2}$ SAG.

$$
12^{2}+6^{2}=13^{2}
$$

$$
144+b^{2}=169
$$

$$
b^{2}=25
$$

$$
b=5
$$

$$
c=13
$$

Score 2: The student gave a complete and correct response.

Question 29

29 In $\triangle A B C, A B=5, A C=12$, and $\mathrm{m} \angle A=90^{\circ}$. In $\triangle D E F, \mathrm{~m} \angle D=90^{\circ}$, $D F=12$, and $E F=13$. Brett claims $\triangle A B C \cong \triangle D E F$ and $\triangle A B C \sim \triangle D E F$. Is Brett correct? Explain why.

$25+144=c^{2}$ $\sqrt{169}=\sqrt{C^{2}}$
$13=C=\overline{B C}$ $5=9=\overline{D E}$

$$
\frac{5}{5}=\frac{13}{13}=\frac{12}{12}=1
$$

$\overline{A B}=\overline{D E}, \overline{B C} \bar{E} \overline{E F}$, and $\overline{A C N} \bar{D}$ b/c they have they have the same lengths. $\triangle A B C \cong \triangle D E F$ by $5 S 5 \simeq$ ISS.
 $\triangle A B C \sim \triangle D E F$ by $S S S \sim$

Score 2: The student gave a complete and correct response.

Geometry - Jan. '23

Question 29

29 In $\triangle A B C, A B=5, A C=12$, and $\mathrm{m} \angle A=90^{\circ}$. In $\triangle D E F, \mathrm{~m} \angle D=90^{\circ}$, $D F=12$, and $E F=13$. Brett claims $\triangle A B C \cong \triangle D E F$ and $\triangle A B C \sim \triangle D E F$. Is Brett correct? Explain why.

$$
\begin{gathered}
5^{2}+12^{2}=(B C)^{2} \\
25+144=(B C)^{2} \\
169=B C^{2} \\
\sqrt{169}=B C \\
13=B C
\end{gathered}
$$

$$
\begin{aligned}
& (E D)^{2}+144=169 \\
& (E D)^{2}=25 \\
& E D=\sqrt{25} \\
& E D=5
\end{aligned}
$$

$\triangle A B C \cong \triangle D E F$ because of SSS $\cong S S S$.

IF the $2 \Delta s$ are \cong it also Means that they are similar. All $\cong \Delta s$ are n.

Score 2: The student gave a complete and correct response.

Question 29

29 In $\triangle A B C, A B=5, A C=12$, and $\mathrm{m} \angle A=90^{\circ}$. In $\triangle D E F, \mathrm{~m} \angle D=90^{\circ}$, $D F=12$, and $E F=13$. Brett claims $\triangle A B C \cong \triangle D E F$ and $\triangle A B C \sim \triangle D E F$. Is Brett correct? Explain why.

Pytragarear Triple 5-12-13
Yes. $\triangle A B C$ is $5,1,13$ By lingarean Triple
an $\triangle D E F$ is also $5,12,13$.

$$
\triangle A B C \cong \triangle D E F \quad \text { by } 5 S S \text {. }
$$

Since the Δ 's \cong, they most be similar.

Score 2: The student gave a complete and correct response.

Geometry - Jan. '23

29 In $\triangle A B C, A B=5, A C=12$, and $\mathrm{m} \angle A=90^{\circ}$. In $\triangle D E F, \mathrm{~m} \angle D=90^{\circ}$, $D F=12$, and $E F=13$. Brett claims $\triangle A B C \cong \triangle D E F$ and $\triangle A B C \sim \triangle D E F$. Is Brett correct? Explain why.

$$
\begin{gathered}
5^{2}+12^{2}=x^{2} \\
25+144=\sqrt{169} \\
13
\end{gathered}
$$

$$
1^{2}+\frac{x^{2}}{\sqrt{25}}=13^{2}
$$

Bret is correct because both triangles are right triangles and if we use the pythagorean theorems we find out that all the side lengths correspond/are equal to each other. (SSS)

Score 1: The student did not explain why the triangles are similar.

29 In $\triangle A B C, A B=5, A C=12$, and $\mathrm{m} \angle A=90^{\circ}$. In $\triangle D E F, \mathrm{~m} \angle D=90^{\circ}$, $D F=12$, and $E F=13$. Brett claims $\triangle A B C \cong \triangle D E F$ and $\triangle A B C \sim \triangle D E F$. Is Brett correct? Explain why.
 yes because they both
have right x 's and
one side \cong.

Score 0: The student did not show enough correct relevant work to receive any credit.

Question 29

29 In $\triangle A B C, A B=5, A C=12$, and $\mathrm{m} \angle A=90^{\circ}$. In $\triangle D E F, \mathrm{~m} \angle D=90^{\circ}$, $D F=12$, and $E F=13$. Brett claims $\triangle A B C \cong \triangle D E F$ and $\triangle A B C \sim \triangle D E F$. Is Brett correct? Explain why.

I would say Brett is half-correct, both friangles are 90? Thatis where the similarities end though. Thetriangle cannot be congraent be causethe angle lengths differ.

Score 0: The student did not show enough correct relevant work to receive any credit.

Question 30

30 The volume of a triangular prism is $70 \mathrm{in}^{3}$. The base of the prism is a right triangle with one leg whose measure is 5 inches. If the height of the prism is 4 inches, determine and state the length, in inches, of the other leg of the triangle.

Score 2: The student gave a complete and correct response.

Question 30

30 The volume of a triangular prism is $70 \mathrm{in}^{3}$. The base of the prism is a right triangle with one leg whose measure is 5 inches. If the height of the prism is 4 inches, determine and state the length, in inches, of the other leg of the triangle.

$$
\begin{aligned}
& V=B h \\
& V=\left(\frac{1}{2} l_{1} l_{2}\right) h \\
& 70=\left(\frac{1}{2} x .5\right) 4 \\
& 70=\frac{10 x}{10} \\
& 7=x
\end{aligned}
$$

Score 2: The student gave a complete and correct response.

Question 30

30 The volume of a triangular prism is $70 \mathrm{in}^{3}$. The base of the prism is a right triangle with one leg whose measure is 5 inches. If the height of the prism is 4 inches, determine and state the length, in inches, of the other leg of the triangle.

$$
5 x=17.5
$$

$$
x=3.5
$$

Score 1: The student found the correct area of the base of the triangular prism, but no further correct work was shown.

Question 30

30 The volume of a triangular prism is $70 \mathrm{in}^{3}$. The base of the prism is a right triangle with one leg whose measure is 5 inches. If the height of the prism is 4 inches, determine and state the length, in inches, of the other leg of the triangle.

$$
\begin{aligned}
V & =\frac{1}{3} B h \\
70 & =\frac{1}{3}\left(\frac{1}{2} h\right)^{4} \\
70 & =\frac{1}{3}\left(\frac{1}{y}(5)(x)\right) y^{2} \\
210 & =10 x \\
21 & =x
\end{aligned}
$$

Score 1: The student made an error in drawing and using a pyramid instead of a prism.

Question 30

30 The volume of a triangular prism is $70 \mathrm{in}^{3}$. The base of the prism is a right triangle with one leg whose measure is 5 inches. If the height of the prism is 4 inches, determine and state the length, in inches, of the other leg of the triangle.

Score 0: The student gave a completely incorrect response.

Question 31

31 Triangle $A B C$ with coordinates $A(-2,5), B(4,2)$, and $C(-8,-1)$ is graphed on the set of axes below.

Determine and state the area of $\triangle A B C$.

$$
\begin{array}{lccc}
\frac{1}{A=\frac{1}{2} b h} & \frac{2}{A=\frac{1}{2} b h} & \frac{3}{2} & A=l . w \\
A=\frac{1}{2}(12)(3) & A=\frac{1}{2}(6)(3) & A=\frac{1}{2} b h & A=(6)(6)(6) \\
A=18 & A=9 & A=18 & A=72 \\
& 18+18+9=45 & 72-45=27 &
\end{array}
$$

Score 2: The student gave a complete and correct response.

Question 31

31 Triangle $A B C$ with coordinates $A(-2,5), B(4,2)$, and $C(-8,-1)$ is graphed on the set of axes below.

Determine and state the area of $\triangle A B C$.

$$
\begin{gathered}
\text { Aof } \square-A \text { of } \Delta I-\Delta I-\Delta I I \\
12 \cdot 6-\frac{b h}{2}-\frac{b h}{2}-\frac{b h}{2} \\
=72-\frac{6(3)}{2}-\frac{6(6)}{2}-\frac{12(3)}{2} \\
=72-(9+18+18) \\
=72-45 \\
\text { Area }=27
\end{gathered}
$$

Score 2: The student gave a complete and correct response.

Question 31

31 Triangle $A B C$ with coordinates $A(-2,5), B(4,2)$, and $C(-8,-1)$ is graphed on the set of axes below.

Determine and state the area of $\triangle A B C$.

Score 2: The student gave a complete and correct response.

Question 31

$$
\begin{array}{rlr}
A=\frac{1}{2} \text { bl } \quad \text { Distance of } B C & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
A=\frac{1}{2}(\sqrt{153} \cdot \sqrt{20.25)} & & =\sqrt{(4+8)^{2}+(2+1)^{2}} \\
A=1 / 2(55.6019259458) & & =\sqrt{(12)^{2}+(3)^{2}} \\
A=27.8309629729 & & =\sqrt{144+9} \\
& & =\sqrt{153}
\end{array}
$$

Score 1: The student made an error using the median instead of the altitude in determining the area.

Question 31

31 Triangle $A B C$ with coordinates $A(-2,5), B(4,2)$, and $C(-8,-1)$ is graphed on the set of axes below.

Determine and state the area of $\triangle A B C$.

$$
\begin{aligned}
& \begin{array}{l}
A_{0} I \square-A \Delta I-A \Delta I I-A \Delta I I \\
12.6-\frac{12(3)}{2}-\frac{6(3)}{2}+\frac{6(6)}{2} \\
72-18+9+18 \\
A_{A B C}=81
\end{array} \\
&
\end{aligned}
$$

Score 1: The student made a computational error in determining the area of the triangle.

Question 31

31 Triangle $A B C$ with coordinates $A(-2,5), B(4,2)$, and $C(-8,-1)$ is graphed on the set of axes below.

Determine and state the area of $\triangle A B C$.

$$
\begin{aligned}
& A=\frac{1}{2 p h} \\
& A=\frac{1}{2}(2)(6) \\
& A=36
\end{aligned}
$$

Score 0: The student did not show enough relevant course-level work to receive any credit.

Question 32

32 Sally and Mary both get ice cream from an ice cream truck. Sally's ice cream is served as a cylinder with a diameter of 4 cm and a total height of 8 cm . Mary's ice cream is served as a cone with a diameter of 7 cm and a total height of 12.5 cm . Assume that ice cream fills Sally's cylinder and Mary's cone.

Who was served more ice cream, Sally or Mary? Justify your answer.

$$
\begin{array}{ll}
\text { Sally }=\pi(d)^{2} \cdot 8 & \left.V=\frac{1}{3}(\pi)(3.5)^{2} \cdot(1) .5\right) \\
\text { Sally } y=100.53 \mathrm{~cm}^{3} & V=160.35 \mathrm{~cm}^{3} \\
\text { mary has more icecream }
\end{array}
$$

Determine and state how much more is served in the larger ice cream than the smaller ice cream, to the nearest cubic centimeter.

$$
160.35-100.53=60 \mathrm{~cm}^{3}
$$

Score 4: The student gave a complete and correct response.

Question 32

32 Sally and Mary both get ice cream from an ice cream truck. Sally's ice cream is served as a cylinder with a diameter of 4 cm and a total height of 8 cm . Mary's ice cream is served as a cone with a diameter of 7 cm and a total height of 12.5 cm . Assume that ice cream fills Sally's cylinder and Mary's cone.

Who was served more ice cream, Sally or Mary? Justify your answer. Mary, because the volume of her container filled is 51.0416π while Sally's is on lu 32π

Determine and state how much more is served in the larger ice cream than the smaller ice cream, to the nearest cubic centimeter.

Score 4: The student gave a complete and correct response.

Question 32

32 Sally and Mary both get ice cream from an ice cream truck. Sally's ice cream is served as a cylinder with a diameter of 4 cm and a total height of 8 cm . Mary's ice cream is served as a cone with a diameter of 7 cm and a total height of 12.5 cm . Assume that ice cream fills Sally's cylinder and Mary's cone.

Who was served more ice cream, Sally or Mary? Justify your answer.
Mar's ice cram because it has more Volceme for the conc then the cynlinder.

Determine and state how much more is served in the larger ice cream than the smaller ice cream, to the nearest cubic centimeter.

$$
\begin{array}{cc}
\text { Cylinder } & \text { conc } \\
V=101 \mathrm{~cm}^{3} & V=160 \mathrm{~cm}^{3}
\end{array}
$$

Score 3: The student correctly determined Mary had more ice cream, but no further correct work was shown.

Question 32

32 Sally and Mary both get ice cream from an ice cream truck. Sally's ice cream is served as a cylinder with a diameter of 4 cm and a total height of 8 cm . Mary's ice cream is served as a cone with a diameter of 7 cm and a total height of 12.5 cm . Assume that ice cream fills Sally's cylinder and Mary's cone.

Who was served more ice cream, Sally or Mary? Justify your answer.

Determine and state how much more is served in the larger ice cream than the smaller ice cream, to the nearest cubic centimeter.

Score 3: The student made a rounding error in determining the difference in the volumes of the ice creams.

Question 32

32 Sally and Mary both get ice cream from an ice cream truck. Sally's ice cream is served as a cylinder with a diameter of 4 cm and a total height of 8 cm . Mary's ice cream is served as a cone with a diameter of 7 cm and a total height of 12.5 cm . Assume that ice cream fills Sally's cylinder and Mary's cone.

Who was served more ice cream, Sally or Mary? Justify your answer.

$$
\begin{array}{l|l}
\sec y & \text { Mary } \\
V=\pi r^{2} h & V=1 / 3 \pi r^{2} h \\
V=F(2)^{2} 8 & V=1 / 3 \pi(3.5)^{2}(12.5) \\
V=100.5 & V=160.35
\end{array}
$$

Determine and state how much more is served in the larger ice cream than the smaller ice cream, to the nearest cubic centimeter.

Score 2: The student correctly determined the volume of the cylinder and cone, but no further correct work was shown.

Question 32

32 Sally and Mary both get ice cream from an ice cream truck. Sally's ice cream is served as a cylinder with a diameter of 4 cm and a total height of 8 cm . Mary's ice cream is served as a cone with a diameter of 7 cm and a total height of 12.5 cm . Assume that ice cream fills Sally's cylinder and Mary's cone.

Who was served more ice cream, Sally or Mary? Justify your answer.
mary cause its bigger

Determine and state how much more is served in the larger ice cream than the smaller ice cream, to the nearest cubic centimeter.

Score 1: The student indicated Mary and 60, but appropriate work was not shown.

Question 32

32 Sally and Mary both get ice cream from an ice cream truck. Sally's ice cream is served as a cylinder with a diameter of 4 cm and a total height of 8 cm . Mary's ice cream is served as a cone with a diameter of 7 cm and a total height of 12.5 cm . Assume that ice cream fills Sally's cylinder and Mary's cone.

Who was served more ice cream, Sally or Mary? Justify your answer.

$$
\begin{aligned}
& V=B h \\
& =-\pi r^{2 h} \\
& V=(2.25 \pi)(12.5) \\
& V=481.0563751
\end{aligned}
$$

Determine and state how much more is served in the larger ice cream than the smaller ice cream, to the nearest cubic centimeter.

Score 1: The student correctly determined the volume of the cylinder, but no further correct work was shown.

Question 32

32 Sally and Mary both get ice cream from an ice cream truck. Sally's ice cream is served as a cylinder with a diameter of 4 cm and a total height of 8 cm . Mary's ice cream is served as a cone with a diameter of 7 cm and a total height of 12.5 cm . Assume that ice cream fills Sally's cylinder and Mary's cone.

Who was served more ice cream, Sally or Mary? Justify your answer.

Determine and state how much more is served in the larger ice cream than the smaller ice cream, to the nearest cubic centimeter.

Score 0: The student did not show enough correct relevant work to receive any credit.

Question 33

33 Given: $\triangle A E B$ and $\triangle D F C, \overline{A B C D}, \overline{A E}\|\overline{D F}, \overline{E B}\| \overline{F C}, \overline{A C} \cong \overline{D B}$

Prove: $\triangle E A B \cong \triangle F D C$

4. Supplequang of congur $\angle A B E \because \angle D(F(A \because A)$
5. $\overline{A C}=\bar{O} B$
6. $\overline{B C} \varphi^{4 C}$
$\mp \overrightarrow{A B-B C}$

1. $\overline{A C}-\overline{B C} \cong \overline{D B}-\overline{B C}$
or $\overline{A B} \underline{\perp} \overline{D D}\left(\sigma^{2}\right)$
2. \triangle 百
$\triangle E A B E X F D C$
3. Supplenents of congrvert andles are congment $\operatorname{OS(2)}\left(\frac{2}{}\right)$
4. Ginem
5. Kefluthe property
6. Substaction potapropertay $(5,6)$
7. ASA pastalate (2)(4)(7)

Score 4: The student gave a complete and correct response.

Question 33

33 Given: $\triangle A E B$ and $\triangle D F C, \overline{A B C D}, \overline{A E}\|\overline{D F}, \overline{E B}\| \overline{F C}, \overline{A C} \cong \overline{D B}$

Prove: $\triangle E A B \cong \triangle F D C$
(1) $\triangle A E B, \triangle D F C, \overline{A B C D}, \overline{A E}\|\overline{D F}, \overline{E B}\| \overline{F C}, \overline{A C} \cong \overline{D B}$
© given
(2) $\angle A \equiv \angle D$
(3) $\overline{B C} \cong \overline{B C}$
(4) $A B=C D$
(5) $\angle E B A=\angle F C D$
(b) $\angle E A B E \triangle F D C$

Score 4: The student gave a complete and correct response.

Question 33

33 Given: $\triangle A E B$ and $\triangle D F C, \overline{A B C D}, \overline{A E}\|\overline{D F}, \overline{E B}\| \overline{F C}, \overline{A C} \cong \overline{D B}$

Prove: $\triangle E A B \cong \triangle F D C$

Staten-at	Reason
1) $\triangle A E B, \triangle D F C, \overline{A B C D}, \overline{A E} \\| \overline{D F}$	Divan

2) $\overline{B C} \because \overline{B x}$
3) $\bar{A} C-\bar{B} C=\overline{D B}-\bar{B} C$
(1) $\bar{A} \bar{B} \cong \overline{C D}$
4) $\begin{aligned} \angle E A P & \because C D F(A) \\ \angle E B A \cong & \angle F C D(A)\end{aligned}$
5) $\triangle E A B \leftrightharpoons \triangle \triangle D C$
6) Reflexive property
7) equals minus equals the result ave equal
8) Il lines form alternate interionangl-es that we congument.
9) ASA postulate.

Score 3: The student wrote an incorrect reason in step 4 for $\angle E B A \cong \angle F C D$.

Question 33

33 Given: $\triangle A E B$ and $\triangle D F C, \overline{A B C D}, \overline{A E}\|\overline{D F}, \overline{E B}\| \overline{F C}, \overline{A C} \cong \overline{D B}$

Prove: $\triangle E A B \cong \triangle F D C$

(2) $\overline{B C} \cong \overline{B C}, \overline{B D}-\overline{B C}$ $\overline{A B} \cong \overline{D C}$
(4) $F \epsilon \cong \neq F$ $\Varangle A \cong \Varangle D$
(5) $\triangle \in A B \equiv \triangle A D C$
(1) Given
(2) reflexive
(3) Subtraction postulate
(4) When 11 lines are out by a transversal alt int x's are \cong
(5) AAS

Score 3: The student wrote an incorrect statement and reason in step 4 for $\angle E \cong \angle F$.

Question 33

33 Given: $\triangle A E B$ and $\triangle D F C, \overline{A B C D}, \overline{A E}\|\overline{D F}, \overline{E B}\| \overline{F C}, \overline{A C} \cong \overline{D B}$

Prove: $\triangle E A B \cong \triangle F D C$

$$
\begin{aligned}
& \begin{array}{l}
\text { 1. } \frac{S A E B, \triangle D F C, \bar{A}}{E B} \| F C \\
2 . \angle A \cong \angle D \\
\text {. } \angle E B A \cong \angle F C D
\end{array} \\
& 4 \cdot \overline{A C} \cong \overline{D B} \\
& \text { 5. } \overline{C B} \cong \overline{C B} \\
& \text { 6. } \overline{A B} \cong \overline{C D} \\
& \text { 7. } \triangle E A B \cong \triangle F D C \\
& \text { Reasons } \\
& \text { 1. Given } \\
& \text { are congruent } \\
& \text { 3. When } 211 \text { lives are cut by } \\
& \text { a transversal, alternate interior } \\
& \text { angles are congruent } \\
& \text { 4. Given } \\
& \text { 5. Reflexive Postulate } \\
& \text { 6. Subtraction Postulate } \\
& \text { 7. ASA } \cong
\end{aligned}
$$

2. When 211 lines are cut by a transversal, alternate exterior angles

Score 2: The student wrote incorrect reasons in steps 2 and 3.

Question 33

33 Given: $\triangle A E B$ and $\triangle D F C, \overline{A B C D}, \overline{A E}\|\overline{D F}, \overline{E B}\| \overline{F C}, \overline{A C} \cong \overline{D B}$

Prove: $\triangle E A B \cong \triangle F D C$

1) $\overline{A E} \| \overline{D F}$
2) Given $\overline{E B} \| \overline{F C}$
3) $41 \cong 42$
4) Alt. interior $<s \cong$
5) $63 \cong \$ 4$ 3) Alt. interior $<S \cong$
6) $\overline{A C} \cong \overline{D B}$
7) Given
8) $\overline{C B} \cong \overline{C B}$
9) reflexive property
10) $\overline{A C}-\overline{B C} \cong$
11) Subtraction property
$\overline{D B}-\overline{C B}$
or
$\overline{A B} \cong \overline{C D}$
12) $\triangle E A B \cong \triangle F O C \quad 7) A S A$

Score 2: The student wrote an incomplete reason in step 2 and an incorrect reason in step 3.

Geometry - Jan. ’23

Question 33

33 Given: $\triangle A E B$ and $\triangle D F C, \overline{A B C D}, \overline{A E}\|\overline{D F}, \overline{E B}\| \overline{F C}, \overline{A C} \cong \overline{D B}$

Prove: $\triangle E A B \cong \triangle F D C$

1. $\overline{A B C D}, \overline{A E}\\|\overline{D F}, \overline{E B}\\| \overline{F C}$	1. given		
2. $\overline{B C} \cong \overline{B C}$	2. Reflexive		
S 3. $\overline{A B} \cong \overline{C D}$	3. Substitution		
5 4. $\overline{E B} \cong \overline{F C}$	4. Parallel lines create \cong		
Segments			
A 5. $\triangle E B A \cong \nsubseteq D C F$	5. \cong Corresponding exterior XS		
6. $\triangle E A B \cong \triangle F D$	6. SAS		

Score 1: The student had only one correct statement and reason in step 2.

Question 33

33 Given: $\triangle A E B$ and $\triangle D F C, \overline{A B C D}, \overline{A E}\|\overline{D F}, \overline{E B}\| \overline{F C}, \overline{A C} \cong \overline{D B}$

Prove: $\triangle E A B \cong \triangle F D C$
$1 \triangle A E B, \triangle D F C, \overline{A B C D}$
$\overline{A E}\|\overline{D F}, \overline{E B}\| \overline{F C}$

2. $チ A \cong \& D$
3. $4 E B A \cong \mp C D$
4. $\triangle E A B=\triangle F D C$
c $=a 1$

GOal

Score 1: The student had only one correct statement and reason in step 2.

Geometry - Jan. '23

Question 33

33 Given: $\triangle A E B$ and $\triangle D F C, \overline{A B C D}, \overline{A E}\|\overline{D F}, \overline{E B}\| \overline{F C}, \overline{A C} \cong \overline{D B}$

Prove: $\triangle E A B \cong \triangle F D C$

Score 0: The student had a completely incorrect response.

Question 34

34 Barry wants to find the height of a tree that is modeled in the diagram below, where $\angle C$ is a right angle. The angle of elevation from point A on the ground to the top of the tree, H, is 40° The angle of elevation from point B on the ground to the top of the tree, H, is 80°. The distance between points A and B is 85 feet.

Barry claims that $\triangle A B H$ is isosceles. Explain why Barry is correct.

$$
\begin{aligned}
& \angle A B C \text { is } 180^{\circ} \mathrm{b} / \mathrm{c} \text { it is a straight lime on the ground this } \\
& \text { mads that } \angle A B H \text { and } \angle C B H \text { ar supplementary. Since }
\end{aligned}
$$

$$
\begin{aligned}
& \angle C B+1 \text { is } 80^{\circ} \text { we hone } \angle A B+1 \text { is } 10^{\circ} \text {. We al many know the } \\
& \angle A \text { is } 40^{\circ} \text {. we no u knew }
\end{aligned}
$$ to 180° ur lan do $100+40+x=180 \angle A A B=42$, Two mas add

\equiv meaning

$$
\begin{aligned}
& \text { =meaning } \\
& \text { Opposite Sides } \overline{A B} \cong \overline{B H}
\end{aligned}
$$

Determine and state, to the nearest foot, the height of the tree.

Then it is isosceles.

$$
\begin{gathered}
x=\sin 80185 \\
x=83.708 \\
84 \mathrm{ft}
\end{gathered}
$$

Score 4: The student gave a complete and correct response.

Question 34

34 Barry wants to find the height of a tree that is modeled in the diagram below, where $\angle C$ is a right angle. The angle of elevation from point A on the ground to the top of the tree, H, is 40° The angle of elevation from point B on the ground to the top of the tree, H, is 80°. The distance between points A and B is 85 feet.

Barry claims that $\triangle A B H$ is isosceles. Explain why Barry is correct.

$$
\angle C B H \text { is } 80^{\circ} \text { and is a supplementary }
$$

angle to $\angle A B H$ making $\angle A B H=100^{\circ}$.
$\angle B A H$ is already given as 40° and since another angle is 100 , the last angle would be 40°. This creates an isosceles \triangle with 2 equivalent angle measures.
Determine and state, to the nearest foot, the height of the tree.

$$
\begin{array}{rlr}
\cos 80^{\circ} & =\frac{y}{85} & \tan 40^{\circ}=\frac{x}{100} \\
y & =14.7 & 84 \text { feet }
\end{array}
$$

Score 4: The student gave a complete and correct response.

Question 34

34 Barry wants to find the height of a tree that is modeled in the diagram below, where $\angle C$ is a right angle. The angle of elevation from point A on the ground to the top of the tree, H, is 40° The angle of elevation from point B on the ground to the top of the tree, H, is 80°. The distance between points A and B is 85 feet.

Barry claims that $\triangle A B H$ is isosceles. Explain why Barry is correct.
$\triangle A B H$ is isosceles because $\angle A B H$ is
100° and $\angle A$ is given 40°. That means $\angle A H B$ must be ". $\angle 0^{\circ}$, and isosceles treanges have 2 equal argus.

Determine and state, to the nearest foot, the height of the tree.

$$
\begin{aligned}
\sin 80 & =\frac{x}{85} \\
x & =14.76 \\
x & =15
\end{aligned}
$$

Score 3: The student wrote a correct explanation and a correct trigonometric equation, but no further correct work was shown.

Question 34

34 Barry wants to find the height of a tree that is modeled in the diagram below, where $\angle C$ is a right angle. The angle of elevation from point A on the ground to the top of the tree, H, is 40° The angle of elevation from point B on the ground to the top of the tree, H, is 80°. The distance between points A and B is 85 feet.

Barry claims that $\triangle A B H$ is isosceles. Explain why Barry is correct.

$$
\begin{aligned}
& \text { Barry is correct bc } \angle A B H \text { is } 100^{\circ} \\
& \angle A, 40^{\circ} ; \angle A H B \text { is } 40^{\circ} \text { too bc } \\
& 100^{\circ}+40^{\circ}=140^{\circ} \text { and a triangle is } 180^{\circ} \\
& 180^{\circ}-140^{\circ}=40^{\circ} .
\end{aligned}
$$

Determine and state, to the nearest foot, the height of the tree.

$$
\begin{array}{lr}
\frac{\operatorname{Tan} 40}{1}=1 \frac{x}{56} & \frac{\operatorname{Tan} 40}{1}=\frac{z}{97.4} \\
x=71.3 & z=81.7 \\
\frac{\operatorname{Cos} 40}{1}=\frac{y}{71} & \\
y=12.4 &
\end{array}
$$

Score 2: The student wrote an incomplete explanation and made an error in using tangent in a non-right triangle.

Question 34

34 Barry wants to find the height of a tree that is modeled in the diagram below, where $\angle C$ is a right angle. The angle of elevation from point A on the ground to the top of the tree, H, is 40° The angle of elevation from point B on the ground to the top of the tree, H, is 80°. The distance between points A and B is 85 feet.

Barry claims that $\triangle A B H$ is isosceles. Explain why Barry is correct.

He is correct bIc $\angle A H B$ is 40° and an isogcees

\triangle reeds to have $2 \cong$ bess l's to de
isosceles.

Determine and state, to the nearest foot, the height of the tree.
85 ft.

Score 2: The student wrote a complete and correct explanation, but no further correct work was shown.

Question 34

34 Barry wants to find the height of a tree that is modeled in the diagram below, where $\angle C$ is a right angle. The angle of elevation from point A on the ground to the top of the tree, H, is 40° The angle of elevation from point B on the ground to the top of the tree, H, is 80°. The distance between points A and B is 85 feet.

Barry claims that $\triangle A B H$ is isosceles. Explain why Barry is correct.

$$
\begin{array}{ccc}
\frac{180}{-80} & \frac{100}{100} & 80 \div 2=40=m \angle A H B \\
m \angle A B H
\end{array} \quad \text { Barr is correct -refer to } \quad \text { (justified worn above as } \begin{gathered}
\text { explaination. }
\end{gathered}
$$

Determine and state, to the nearest foot, the height of the tree.

$$
\begin{aligned}
& \operatorname{toA} \\
& \begin{aligned}
\frac{\tan (40)}{1}=\frac{x}{85} & x=\tan (40) \cdot 85 \\
x & =71.3235
\end{aligned}
\end{aligned}
$$

Score 1: The student wrote an incomplete explanation. No further correct relevant work was shown.

Question 34

34 Barry wants to find the height of a tree that is modeled in the diagram below, where $\angle C$ is a right angle. The angle of elevation from point A on the ground to the top of the tree, H, is 40° The angle of elevation from point B on the ground to the top of the tree, H, is 80°. The distance between points A and B is 85 feet.

Barry claims that $\triangle A B H$ is isosceles. Explain why Barry is correct.

$$
\begin{aligned}
& \overline{A B} \text { and } \overline{B H} \text { are the } \\
& \text { same length. }
\end{aligned}
$$

Determine and state, to the nearest foot, the height of the tree.

Score 0: The student did not show enough correct relevant work to receive any credit.

Question 35

35 Given: Triangle $D U C$ with coordinates $D(-3,-1), U(-1,8)$, and $C(8,6)$

Prove: $\triangle D U C$ is a right triangle
[The use of the set of axes on the next page is optional.]

$$
\begin{aligned}
& \left.\begin{array}{l}
m_{\overline{o u}}=\frac{y_{1}-y_{1}}{x_{1}-x_{1}}=\frac{8-(-1)}{-1+3}=\frac{9}{2} \\
m \overline{v c}=\frac{6-8}{8+1}=\frac{-2}{9}
\end{array}\right] \begin{array}{l}
\text { opp. reciprocal slopes } \\
\overline{D U} \perp \overline{U C} \\
\perp \text { lines form right } x ' s .
\end{array} \\
& \text { aDze is a right } \triangle \text { because } \\
& \text { it has a right aryl. }
\end{aligned}
$$

Question 35 is continued on the next page.
Score 6: The student gave a complete and correct response.

Point U is reflected over $\overline{D C}$ to locate its image point, U^{\prime}, forming quadrilateral $D U C U^{\prime}$.
Prove quadrilateral $D U C U^{\prime}$ is a square.

Question 35

35 Given: Triangle $D U C$ with coordinates $D(-3,-1), U(-1,8)$, and $C(8,6)$

Prove: $\triangle D U C$ is a right triangle
[The use of the set of axes on the next page is optional.]

$$
\begin{aligned}
& \sqrt{85}^{2}+\sqrt{85}^{2}=\sqrt{170}^{2} \\
& 85+85=170 \\
& 170=170
\end{aligned}
$$

Since the Pythagorean Theorem works,
Δ Due is a right Δ.

Question 35 is continued on the next page.
Score 6: The student gave a complete and correct response.

Question 35 continued.

Point U is reflected over $\overline{D C}$ to locate its image point, U^{\prime}, forming quadrilateral $D U C U^{\prime}$.
Prove quadrilateral $D U C U^{\prime}$ is a square.

$$
\begin{aligned}
& u^{\prime}(6,-3) \\
& D u^{\prime}=\sqrt{(6-(-3))^{2}+(-3-(-1))^{2}} \\
& =\sqrt{9^{2}+(-2)^{2}} \\
& =\sqrt{8+1+4} \\
& D u^{\prime}=\sqrt{85} \\
& \text { Since all } 4 \text { sides of quadrilateral Ducu'are }=\text {, it is a rhombus } \\
& \begin{aligned}
& \overline{D C} \approx \overline{u n} \text {. Since the diagonals of rhombus Duct } u^{\prime} \text { are }=\text {, it is } \\
& \text { a square. }
\end{aligned}
\end{aligned}
$$

Question 35

35 Given: Triangle $D U C$ with coordinates $D(-3,-1), U(-1,8)$, and $C(8,6)$

Prove: $\triangle D U C$ is a right triangle
[The use of the set of axes on the next page is optional.]

$$
\begin{aligned}
& D(-3,-1) \\
& 4(-1,8)^{2} \\
& m=\frac{42-y, 1}{x_{2}-x_{1}} \\
&= \frac{8-1}{-1-3} \\
&= \frac{9}{2}
\end{aligned}
$$

$$
\begin{aligned}
& D(-3,-1)^{1} \\
& C(8,6)^{2} \\
& m=\frac{42-41}{x 2-x 1} \\
& =\frac{6--1}{8--3} \\
& =\frac{7}{11}
\end{aligned}
$$

$$
\begin{array}{rl}
& 4(-1,8) 1 \\
m & C(8,6)^{2} \\
& =\frac{6-8}{x_{2}-x_{1}} \\
8--1 \\
& =\frac{-2}{9}
\end{array}
$$

Due is a Right triangle because lines $\overline{\text { Bu and }}$ UC's slopes are negative Recipicals, meaning they are perpedicular. And perpendicular lines creat 90° angles making the trim angle e. Right triangle.

Question 35 is continued on the next page.
Score 5: The student wrote an incomplete concluding statement in proving the square.

Question 35 continued.

Point U is reflected over $\overline{D C}$ to locate its image point, U^{\prime}, forming quadrilateral $D U C U^{\prime}$. Prove quadrilateral $D U C U^{\prime}$ is a square.

$$
\begin{aligned}
& \begin{array}{l}
D(-3,-1))^{\prime} \\
u(-1,8) 2
\end{array}\left\{\begin{array}{l}
u(-1,8) 1 \\
c(8,6)^{2}
\end{array}\left\{\begin{array}{l}
c(8,6) 1 \\
u^{\prime}(6,-3)^{2}
\end{array}\right\} \begin{array}{l}
u^{\prime}(6,-3){ }^{\prime} \\
D(-3,-1)^{2}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
=\left((1-3)^{2}+(8-1)^{2}\right. \\
=\sqrt{85}=\sqrt{(8--1)} \\
=\sqrt{85}
\end{array}\right\}=\sqrt{85} \quad \begin{array}{l}
=\sqrt{85} \\
=\sqrt{(-6)}
\end{array}
\end{aligned}
$$

Duck' is a rhombus because all the sides are equal.
Duck' is a square because all the sides are equal.

Question 35

35 Given: Triangle $D U C$ with coordinates $D(-3,-1), U(-1,8)$, and $C(8,6)$

Prove: $\triangle D U C$ is a right triangle
[The use of the set of axes on the next page is optional.]

$$
\begin{aligned}
& m \overline{D U}=\frac{8+1}{-1+3}=\frac{a}{2} \\
& m \overline{U C}=\frac{6-8}{8+1}=\frac{-2}{9}
\end{aligned}
$$

The slopes of $\overline{D U}$ and $\overline{U C}$ are negative reciprocals, \therefore $\overline{D O}$ is 1 to $\overline{U C}, \therefore$ perpendicular lines form right $<5, \therefore \triangle D U C$ contains a $r t .<, \therefore \triangle D U C$ is a rt. Δ.

Question 35 is continued on the next page.
Score 4: The student made a conceptual error in proving the square.

Question 35 continued.

Point U is reflected over $\overline{D C}$ to locate its image point, U^{\prime}, forming quadrilateral $D U C U^{\prime}$.
Prove quadrilateral $D U C U^{\prime}$ is a square.

$$
\begin{aligned}
& m \overline{C U}=\frac{6+3}{8-6}=\frac{a}{2} \quad \begin{array}{l}
\text { The slopes of } \overline{D U^{\prime}} \text { and }
\end{array} \\
& m \overline{D U^{\prime}}=\frac{-1+3}{-3-6}=\frac{2}{-9} \quad \begin{array}{l}
\text { reciprocals, } \therefore \overline{D U^{\prime}} \text { is } 1 \\
\text { to } \overline{C O^{\prime},} \therefore \text { perpendicular }
\end{array} \\
& \text { lines form rt. <s, } \because \text {. } \\
& \text { quad DUCU' contains } \\
& 2 \mathrm{rt} .<5 \text {, i. quad DUCU } \\
& \text { is a square. }
\end{aligned}
$$

Question 35

35 Given: Triangle $D U C$ with coordinates $D(-3,-1), U(-1,8)$, and $C(8,6)$

Prove: $\triangle D U C$ is a right triangle
[The use of the set of axes on the next page is optional.]
slope of $\overline{D U}=\frac{8-(-1)}{-1-(-3)}=\frac{9}{2}$
slope of $\overline{u C}=\frac{8-6}{-1-8}=-\frac{2}{7}$
Price the slopes are negative Meuprocies the lines are perpendicular and perpendicular lives form right angles. tHerefore $\triangle D U C$ is a piqut triangle.

Question 35 is continued on the next page.
Score 3: The student proved $\triangle D U C$ is a right triangle and located U^{\prime}. No further correct work was shown.

Question 35 continued.

Point U is reflected over $\overline{D C}$ to locate its image point, U^{\prime}, forming quadrilateral $D U C U^{\prime}$.
Prove quadrilateral $D U C U^{\prime}$ is a square.

Question 35

35 Given: Triangle $D U C$ with coordinates $D(-3,-1), U(-1,8)$, and $C(8,6)$

Prove: $\triangle D U C$ is a right triangle
[The use of the set of axes on the next page is optional.]

$$
\begin{aligned}
& m_{D U}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{8-1}{-1+3}=\frac{9}{2} \text { opposite reciprocal slopes } \\
& m_{\pi c}=\frac{6-8}{8+1}=\frac{-2}{9} \\
& D \overrightarrow{A C} \\
& \perp \text { lines form } r+k s \text {. } \\
& \text { th is acrt.k. } \\
& \triangle D A C \text { is a rt } \Delta \text { because } \\
& \text { It has a rt. K. }
\end{aligned}
$$

Question 35 is continued on the next page.
Score 2: The student proved $\triangle D U C$ is a right triangle. No further correct work was shown.

Question 35 continued.

Point U is reflected over $\overline{D C}$ to locate its image point, U^{\prime}, forming quadrilateral $D U C U^{\prime}$.
Prove quadrilateral $D U C U^{\prime}$ is a square.

Question 35

35 Given: Triangle $D U C$ with coordinates $D(-3,-1), U(-1,8)$, and $C(8,6)$

Prove: $\triangle D U C$ is a right triangle
[The use of the set of axes on the next page is optional.]

$$
\begin{aligned}
& D U=\sqrt{(-3-(-1))^{2}+(-1-8)^{2}}=\sqrt{(-2)^{2}+(-9)^{2}}=\sqrt{85} \\
& O C=\sqrt{(-1-8)^{2}+(8-6)^{2}}=\sqrt{(-9)^{2}+2^{2}}=\sqrt{85} \\
& D C=\sqrt{(-3-8)^{2}+(-1-6)^{2}}=\sqrt{(-1)^{2}+(-7)^{2}}=\sqrt{170} \\
& \Rightarrow(\sqrt{85})^{2}+(\sqrt{85})^{2}=(\sqrt{170})^{2} \\
& \Rightarrow(\sqrt{85})^{2}+(\sqrt{85})^{2}=170,(\sqrt{170})^{2}=170 \\
& \Rightarrow D U^{2}+V C^{2}=D e^{2}
\end{aligned}
$$

$\Rightarrow \triangle D U C$ is a right triangle (converse g Pirtagore theorem)

Question 35 is continued on the next page.
Score 2: The student proved $\triangle D U C$ is a right triangle. No further correct work was shown.

Question 35 continued.

Point U is reflected over $\overline{D C}$ to locate its image point, U^{\prime}, forming quadrilateral $D U C U^{\prime}$.
Prove quadrilateral $D U C U^{\prime}$ is a square.

$$
\begin{aligned}
& U \text { and } U^{\prime} \text { are reflected over } \overline{D E} \\
& \Rightarrow\left\{\begin{array}{l}
O U=O U \\
00=O C \\
U U^{\prime} \perp D C
\end{array} \Rightarrow D V C U^{\top}\right. \text { is a rhombus }
\end{aligned}
$$

Question 35

35 Given: Triangle $D U C$ with coordinates $D(-3,-1), U(-1,8)$, and $C(8,6)$

Prove: $\triangle D U C$ is a right triangle
[The use of the set of axes on the next page is optional.]

have opposite reciprocal

Question 35 is continued on the next page.
Score 1: The student wrote an incomplete conclusion in proving the right triangle. No further correct work was shown.

Question 35 continued.

Point U is reflected over $\overline{D C}$ to locate its image point, U^{\prime}, forming quadrilateral $D U C U^{\prime}$. Prove quadrilateral $D U C U^{\prime}$ is a square.

Question 35

35 Given: Triangle $D U C$ with coordinates $D(-3,-1), U(-1,8)$, and $C(8,6)$

Prove: $\triangle D U C$ is a right triangle
[The use of the set of axes on the next page is optional.]

$$
\begin{aligned}
& D=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& \sqrt{(-1-3)^{2}+(8-1)^{2}} \\
& \sqrt{85} \\
& D=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& \sqrt{(8-1)^{2}+(6-8)^{2}} \\
& \sqrt{85} \\
& \triangle D V C \text { is a right triangle } \\
& \text { because it forms a right angle. }
\end{aligned}
$$

Question 35 is continued on the next page.
Score 1: The student located U^{\prime}. The student did not show enough correct relevant work to receive any additional credit.

Question 35 continued.

Point U is reflected over $\overline{D C}$ to locate its image point, U^{\prime}, forming quadrilateral $D U C U^{\prime}$.
Prove quadrilateral $D U C U^{\prime}$ is a square.

Question 35

35 Given: Triangle $D U C$ with coordinates $D(-3,-1), U(-1,8)$, and $C(8,6)$

Prove: $\triangle D U C$ is a right triangle
[The use of the set of axes on the next page is optional.]

Question 35 is continued on the next page.

Score 0: The student did not show enough correct relevant work to receive any credit.

Geometry - Jan. '23

Question 35 continued.

Point U is reflected over $\overline{D C}$ to locate its image point, U^{\prime}, forming quadrilateral $D U C U^{\prime}$.
Prove quadrilateral $D U C U^{\prime}$ is a square.

