FOR TEACHERS ONLY

The University of the State of New York
 REGENTS HIGH SCHOOL EXAMINATION

PS-CH

PHYSICAL SETTING/CHEMISTRY

Tuesday, August 17, 2004 - 12:30 to 3:30 p.m., only

SCORING KEY AND RATING GUIDE

Directions to the Teacher:

Refer to the directions on page 3 before rating student papers.
Updated information regarding the rating of this examination may be posted on the New York State Education Department's web site during the rating period. Visit the site http://www.emsc.nysed.gov/osa/ and select the link "Latest Information" for any recently posted information regarding this examination. This site should be checked before the rating process for this examination begins and at least one more time before the final scores for the examination are recorded.

Part A and Part B-1

Allow 1 credit for each correct response.

Part A					Part B-1			
1.	12		23	2.		3	43	2
$2 \ldots .$.	13	3.	24	3.	35	3	44	4
$3 \ldots .$.	14	1.	25	2.	36	1.	45	2
$4 \ldots . .$.	15	2	26	2.	37	1.	46	2
$5 \ldots .$.	16	4	27	3	38	3	47	1
$6 \ldots . .3$		2.	28	2		3.	48	2
$7 \ldots$.	18	3	29	4		3	49	3
8...... 4.	19	4.	30	3		4.	50	3
$9 \ldots .$.	20	4.	31	3		3		
$10 \ldots \ldots$.		1.	32	2				
$11 \ldots . . .4$	22	. . 1.	33	2				

Directions to the Teacher

Follow the procedures below for scoring student answer papers for the Physical Setting/Chemistry examination. Additional information about scoring is provided in the publication Information Booklet for Administering and Scoring Regents Examinations in the Sciences.

Use only red ink or red pencil in rating Regents papers. Do not correct the student's work by making insertions or changes of any kind.

On the detachable answer sheet for Part A and Part B-1, indicate by means of a check mark each incorrect or omitted answer. In the box provided at the end of each part, record the number of questions the student answered correctly for that part.

At least two science teachers must participate in the scoring of each student's responses to the Part B-2 and Part C open-ended questions. Each of these teachers should be responsible for scoring a selected number of the open-ended questions on each answer paper. No one teacher is to score all the open-ended questions on a student's answer paper.

Students' responses must be scored strictly according to the Scoring Key and Rating Guide. For open-ended questions, credit may be allowed for responses other than those given in the rating guide if the response is a scientifically accurate answer to the question and demonstrates adequate knowledge as indicated by the examples in the rating guide. Complete sentences are not required. Phrases, diagrams, and symbols may be used. In the student's answer booklet, record the number of credits earned for each answer in the box printed to the right of the answer lines or spaces for that question.

Fractional credit is not allowed. Only whole-number credit may be given to a response. Units need not be given when the wording of the questions allows such omissions.

Raters should enter the scores earned for Part A, Part B-1, Part B-2, and Part C on the appropriate lines in the box printed on the answer booklet and then should add these four scores and enter the total in the box labeled "Total Written Test Score." Then, the student's raw score should be converted to a scaled score by using the conversion chart that will be posted on the Department's web site http://www.emsc.nysed.gov/osa/ on Tuesday, August 17, 2004. The student's scaled score should be entered in the labeled box on the student's answer booklet. The scaled score is the student's final examination score.

All student answer papers that receive a scaled score of 60 through 64 must be scored a second time. For the second scoring, a different committee of teachers may score the student's paper or the original committee may score the paper, except that no teacher may score the same open-ended questions that he/she scored in the first rating of the paper. The school principal is responsible for assuring that the student's final examination score is based on a fair, accurate, and reliable scoring of the student's answer paper.

Because scaled scores corresponding to raw scores in the conversion chart may change from one examination to another, it is crucial that for each administration, the conversion chart provided in the scoring key for that administration be used to determine the student's final score. The chart in this scoring key is usable only for this administration of the examination.

Part B-2

Allow a total of 15 credits for this part. The student must answer all questions in this part.

[1] Allow 1 credit for Group 13 and Period 4.
[1] Allow 1 credit for $\mathbf{1 6}$ or $\mathbf{1 6 . 0}$.
[1] Allow 1 credit for a correct numerical setup. Units do not need to be shown. Acceptable responses include, but are not limited to, these examples:

$$
\begin{aligned}
& 1.2 \mathrm{M}=\frac{0.50 \mathrm{~mole}}{x} \\
& 1.2=\frac{0.50}{x} \\
& 0.50 \mathrm{~mol} \times \frac{1 \mathrm{~L}}{1.2 \mathrm{~mol}} \\
& \frac{1.2 \mathrm{~mole}}{1 \mathrm{~L}}=\frac{.5 \mathrm{~mole}}{x}
\end{aligned}
$$

[1] Allow 1 credit for a correct response. Acceptable responses include, but are not limited to, these examples:

Both samples are at the same temperature.
Samples B and C are both at 273 K (or at $0^{\circ} \mathrm{C}$).
both at STP
[1] Allow 1 credit for a correct response. Acceptable responses include, but are not limited to, these examples:

Sample A has only one type of molecule.
All particles are the same.
not a mixture

56 [1] Allow 1 credit for a correct response. Acceptable responses include, but are not limited to, these examples: Sample C represents a diatomic element and a compound.
shows an element and a compound mixed
$\mathrm{OO}=\mathrm{F}_{2}$ and $\mathrm{O}=\mathrm{HCl}$

57 [1] Allow 1 credit for a correct response. Acceptable responses include, but are not limited to, these examples:
Particles in sample A show molecules of a compound whereas particles in sample B show two compounds as a mixture.
A - compound, B - mixture
$A-1$ compound, $B-2$ compounds

58 and 59 An example of a correct response is shown below.

58 [1] Allow 1 credit for marking an appropriate scale. An appropriate scale is one that allows a trend to be seen.

59 [1] Allow 1 credit for plotting all the points correctly (± 0.3 grid space). Plotted points do not need to be circled or connected.

60
[1] Allow 1 credit for a correct response. Acceptable responses include, but are not limited to, these examples:

The difference in electronegativity for the $\mathrm{H}-\mathrm{F}$ bond is 1.9 and the electronegativity difference for the $\mathrm{H}-\mathrm{I}$ bond is 0.6 . The difference for $\mathrm{H}-\mathrm{F}$ is greater and therefore $\mathrm{H}-\mathrm{F}$ is more polar.
$\mathrm{H}-\mathrm{F}$ is more polar because F is more electronegative than I .

61 [1] Allow 1 credit for 96.
[1] Allow 1 credit for a correct numerical setup. Units do not need to be shown. Acceptable responses include, but are not limited to, these examples:

$$
\begin{aligned}
& 11 \mathrm{~g} \times \frac{1 \text { mole }}{44 \mathrm{~g}} \\
& \frac{11}{44}
\end{aligned}
$$

63 [1] Allow 1 credit for a correct response. Do not allow credit for answers only citing Reference Table G. Acceptable responses include, but are not limited to, these examples:

Increasing the temperature favors the forward, endothermic reaction.
Adding heat shifts the reaction to the right.

64 [1] Allow 1 credit for a correct response. Acceptable responses include, but are not limited to, these examples:

The rate of dissolving KNO_{3} is equal to the rate of recrystallizing KNO_{3}.
The KNO_{3} is going into the solution at the same rate it precipitates out of the solution.

65 [1] Allow 1 credit for a correct response. Acceptable responses include, but are not limited to, these examples:

Part C

Allow a total of $\mathbf{2 0}$ credits for this part. The student must answer all questions in this part.

[1] Allow 1 credit for $\ldots \mathrm{Fe}_{2} \mathrm{O}_{3}+\underline{\mathbf{3}} \mathrm{CO} \rightarrow \underline{\mathbf{2}} \mathrm{Fe}+\underline{\mathbf{3}} \mathrm{CO}_{2}$. Allow credit even if the coefficient "1" is written in front of $\mathrm{Fe}_{2} \mathrm{O}_{3}$.

67 [1] Allow 1 credit for a correct response. Acceptable responses include, but are not limited to, this example:

Reaction Coordinate

68 [1] Allow 1 credit for $\mathbf{+ 4}$ or 4 .

69 [1] Allow 1 credit for 1535.

70

71 [1] Allow 1 credit for a correct response. Acceptable responses include, but are not limited to, these examples:
potassium atom 2-8-8-1 and potassium ion 2-8-8
The K^{+}ion has only three electron shells.
[1] Allow 1 credit for a correct response. Acceptable responses include, but are not limited to, these examples:

$$
\begin{aligned}
& \text { charge } \\
& \text { mobility } \\
& \text { size }
\end{aligned}
$$

73 [1] Allow 1 credit for a correct response. Acceptable responses include, but are not limited to, these examples:
polymerization
addition polymerization
synthesis
addition

74 [1] Allow 1 credit for two correct responses. The responses must be two different consumer products. Acceptable responses include, but are not limited to, these examples:
synthetic fibers
clothing
carpeting
antifreeze (ethylene glycol)
food wrap
plastic bottles
high-density polyethylene
low-density polyethylene

75 [1] Allow 1 credit for a correct response. Acceptable responses include, but are not limited to, these examples:
has a carbon-carbon double bond
Two carbons share four electrons.
$\mathrm{C}=\mathrm{C}$

76
[1] Allow 1 credit for a correct response. Acceptable responses include, but are not limited to, these examples:

2
Zn
anode
right

77 [1] Allow 1 credit for a correct response. Acceptable responses include, but are not limited to, this example:

$$
\mathrm{Pb}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}
$$

or
Allow 1 credit for a response consistent with the student's answer to question 76.

78 [1] Allow 1 credit for a correct response indicating direction. Acceptable responses include, but are not limited to, these examples:
from anode to cathode
Zn electrode to Pb electrode
to the left
from half-cell 2 to half-cell 1

- to +
or
Allow 1 credit for a response consistent with the student's answer to question 76.

79 [1] Allow 1 credit for a correct response. Acceptable responses include, but are not limited to, these examples:
insoluble
not soluble

80 [1] Allow 1 credit for a correct numerical setup. Correct numerical substitutions must be shown for all three brands. Units do not need to be shown. Acceptable responses include, but are not limited to, these examples:

$$
\begin{aligned}
& X: \frac{25.20 \mathrm{~mL}}{2.00 \mathrm{~g}} \\
& Y: \frac{18.65 \mathrm{~mL}}{1.20 \mathrm{~g}} \\
& \mathrm{Z}: \frac{22.50 \mathrm{~mL}}{1.75 \mathrm{~g}}
\end{aligned}
$$

[1] Allow 1 credit for \boldsymbol{Y}.
or
Allow 1 credit for a response consistent with the student's setup for brands X, Y, and Z in question 80.

82 [1] Allow 1 credit for a correct response. Acceptable responses include, but are not limited to, these examples:
cause bone tumors
damage bone marrow
can cause leukemia or anemia
radioactive
DNA damage
death

83 [1] Allow 1 credit for a correct response. Acceptable responses include, but are not limited to, these examples:

$$
\begin{aligned}
& { }_{88}^{226} \mathrm{Ra} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{86}^{222} \mathrm{Rn} \\
& { }_{88}^{226} \mathrm{Ra} \rightarrow{ }_{86}^{222} \mathrm{Rn}+{ }_{2}^{4} \alpha
\end{aligned}
$$

84 [1] Allow 1 credit for a correct response. Acceptable responses include, but are not limited to, these examples:

Radium and calcium are both located in Group 2 on the Periodic Table.
same family
2 valence electrons

85 [1] Allow 1 credit for $\mathbf{1 6 0 0}$.

The Chart for Determining the Final Examination Score for the August 2004 Regents Examination in Physical Setting/Chemistry will be posted on the Department's web site http://www.emsc.nysed.gov/osa/ on Tuesday, August 17, 2004. Conversion charts provided for previous administrations of the Regents Examination in Physical Setting/Chemistry must NOT be used to determine students' final scores for this administration.

Map to Core Curriculum

August 2004 Physical Setting/Chemistry			
Question Numbers			
Key Ideas	Part A	Part B	Part C
Standard 1			
Math Key Idea 1		42,50,58,59,60	69,80
Math Key Idea 2			
Math Key Idea 3			80,81
Sci. Inq. Key Idea 1		54	71,75,84
Sci. Inq. Key Idea 2			
Sci. Inq. Key Idea 3			68,85
Eng. Des. Key Idea 1			
Standard 2			
Key Idea 1			79
Key Idea 2			
Standard 6			
Key Idea 1			
Key Idea 2			
Key Idea 3			
Key Idea 4			
Key Idea 5			
Standard 7			
Key Idea 1			74,80,81,82
Key Idea 2			
Standard 4 Process Skills			
Key Idea 3		$\begin{gathered} \hline 34,35,36,37,39, \\ 40,44,45,46,47, \\ 48,51,52,53,55, \\ 56,57,61,62,63, \\ 64,65 \\ \hline \end{gathered}$	$\begin{gathered} \hline 66,70,73,76 \\ 77,78,83 \end{gathered}$
Key Idea 4		43,49	67,85
Key Idea 5		38,41	72
Standard 4			
Key Idea 3	$\begin{array}{\|c} \hline 1,2,3,4,7,8,9,11 \\ 12,13,15,17,18 \\ 20,21,22,23,24, \\ 25,26,27,28,29 \\ 30,32,33 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 34,35,36,37,39 \\ 40,44,45,46,47, \\ 48,50,51,52,53, \\ 55,56,57,58,59, \\ 61,62,63,64,65 \\ \hline \end{array}$	$\begin{gathered} 66,68,72,73 \\ 74,75,76,77 \\ 78,79,80,81 \\ 84 \end{gathered}$
Key Idea 4	14,19,31	42,43,49,54	67,69,82,83,85
Key Idea 5	5,6,9,10,16	38,40,41,60	70,71,72
Reference Tables			
2002 Edition	$\begin{gathered} 2,4,7,10,14 \\ 27,31,32 \end{gathered}$	$\begin{aligned} & 34,35,36,38,39 \\ & 40,41,42,44,47 \\ & 48,49,50,51,53, \\ & 58,59,60,61,62 \end{aligned}$	$\begin{aligned} & \text { 68,69,70,75, } \\ & 79,83,84,85 \end{aligned}$

