

Educator Guide to the 2013 Grade 6 Common Core Mathematics Test

THE UNIVERSITY OF THE STATE OF NEW YORK
 Regents of The University

Merryl H. Tisch, Chancellor, B.A., M.A., Ed.D. New York
Anthony S. Bottar, Vice Chancellor, B.A., J.D. Syracuse
Robert M. Bennett, Chancellor Emeritus, B.A., M.S. Tonawanda
James C. Dawson, A.A., B.A., M.S., Ph.D. Plattsburgh
Geraldine D. Chapey, B.A., M.A., Ed.D. Belle Harbor
Harry Phillips, 3rd, B.A., M.S.F.S. Hartsdale
James R. Tallon, Jr., B.A., M.A. Binghamton
Roger B. Tilles, B.A., J.D. Woodbury
Charles R. Bendit, B.A. Manhattan
Betty A. Rosa, B.A., M.S. in Ed., M.S. in Ed., M.Ed., Ed.D. Bronx
Lester W. Young, Jr., B.S., M.S., Ed.D. Brooklyn
Christine D. Cea, B.A., M.A., Ph.D. Staten Island
Wade S. Norwood, B.A. Rochester
James O. Jackson, B.S., M.A., Ph.D Albany
Kathleen M. Cashin, B.S., M.S., Ed.D. Brooklyn
James E. Cottrell, B.S., M.D Brooklyn
T. Andrew Brown, B.A., J.D. Rochester
President of The University and Commissioner of Education
Dr. John B. KING, Jr.
Deputy Commissioner of Education, P-12Ken Slentz
Associate Commissioner, Office of Curriculum, Assessment, and Educational Technology Ken Wagner
Director, Transition to Common Core Assessments
CANDACE SHYER
Director of State AssessmentSteven E. Katz

[^0]
Table of Contents

2013 Common Core Mathematics Tests 1
Common Core Learning Standards for Mathematics 2
Clusters, Standards, and Sequencing in Instruction and Assessment 4
Content Emphases 4
Emphasized Standards 4
Sequencing 5
Emphases and Sequencing 6
The 2013 Grade 6 Common Core Mathematics Test 8
Testing Sessions and Times 8
When Students Have Completed Their Test 9
Test Design 9
2013 Grade 6 Common Core Mathematics Test Blueprint 10
Question Formats 11
Multiple-Choice 11
Short-Response 11
Extended-Response 11
Sample Questions. 11
New Mathematics Rubrics and Scoring Policies 12
2-Point Holistic Rubric 12
3-Point Holistic Rubric 13
2- and 3-Point Mathematics Scoring Policies 14
Mathematics Tools 15
Why Mathematics Tools? 15
Rulers and Protractors 15
Calculators 15
Reference Sheet .. 16

Grade 6 Common Core Mathematics Test Guide iv

Foreword

Beginning with the current school year (2012-13), NYSED is redesigning its assessment program to measure what students know and can do relative to the grade-level Common Core Learning Standards (CCLS) for Mathematics. The CCLS for Mathematics make up a broad set of mathematics understandings for students. The CCLS for Mathematics define mathematics understanding through the integration of the Standards for Mathematical Content and the Standards for Mathematical Practice.

The 2013 Grade 6 Common Core Mathematics Test is designed to measure student mathematical understanding as defined by the CCLS. As such, there will be a noticeable change in rigor and depth in mathematics.

Many of the questions on the 2013 Grade 6 Common Core Mathematics Test are more advanced and complex than those found on prior tests that measured prior grade-level standards. Many questions will require that students be fluent in earlier-grade level skills, capable of showing their procedural and conceptual proficiency on a single standard in several distinct ways, and capable of negotiating multi-step questions that require knowledge and ability across more than one grade-level standard.

Students will be expected to understand math conceptually, use prerequisite skills with grade-level math facts, and solve math problems rooted in the real world, deciding for themselves which formulas and tools (such as protractors or rulers) to use.

This guide details many of the changes involved with both instruction and the newly designed tests that measure the Common Core Learning Standards for Mathematics. While reading about each of the changes will help to understand how to prepare students for the upcoming test, it is important to remember that research has consistently demonstrated that students perform best on local, regional, statewide, or national tests when they have a great teacher delivering high-quality instruction aligned to rigorous standards ${ }^{1}$. Rote test prep practices are incompatible with highly effective teaching and lead to lower student performance ${ }^{2}$.

[^1]
2013 Common Core Mathematics Tests

As part of the New York State Board of Regents Reform Agenda, the New York State Education Department (NYSED) has embarked on a comprehensive reform initiative to ensure that schools prepare students with the knowledge and skills they need to succeed in college and in their careers. To realize the goals of this initiative, changes have occurred in standards, curricula, and assessments. These changes will impact pedagogy and, ultimately, student learning.

The Common Core Learning Standards (CCLS) call for changes in what is expected from a teacher's instructional approach. In mathematics courses, the CCLS demand that teachers focus their instruction on fewer, more central standards (http://engageny.org/resource/math-content-emphases/), thereby providing room to build core understandings and connections between mathematical concepts and skills.

More specifically, the CCLS demand six key shifts in instruction in mathematics, summarized in the chart below. A more detailed description of these shifts can be found at http://engageny.org/resource/common-core-shifts/.

Shifts in Mathematics		
Shift 1	Focus	Teachers significantly narrow and deepen the scope of how time and energy is spent in the Mathematics classroom. They do so in order to focus deeply on only the concepts that are prioritized in the standards.
Shift 2	Coherence	Principals and teachers carefully connect the learning within and across grades so that students can add new understanding onto foundations built in previous years.
Shift 3	Fluency	Students are expected to have speed and accuracy with simple calculations; teachers structure class time and/or homework time for students to memorize core functions.
Shift 4	Deep Understanding	Students deeply understand and can operate easily within a math concept before moving on. They learn more than the procedure to get the answer right. They learn the math.
Shift 5	Application	Students are expected to use math and choose the appropriate concept for application even when they are not prompted to do so.
Shift 6	Dual Intensity	Students are practicing procedures and understanding concepts. There is more than a balance between these two things in the classroom-both are occurring with intensity.

The Grades 3-8 English Language Arts and Mathematics New York State Testing Program (NYSTP) has been redesigned to measure student learning aligned with the instructional shifts necessitated by the CCLS. This document provides specific details about the 2013 Grade 6 Common Core Mathematics Test and the standards that it measures.

Common Core Learning Standards for Mathematics

In Grade 6, instructional time should focus on four critical areas: (1) connecting ratio and rate to whole number multiplication and division and using concepts of ratio and rate to solve problems; (2) completing understanding of division of fractions and extending the notion of number to the system of rational numbers, which includes negative numbers; (3) writing, interpreting, and using expressions and equations; and (4) developing understanding of statistical thinking.

1. Students use reasoning about multiplication and division to solve ratio and rate problems about quantities. By viewing equivalent ratios and rates as deriving from, and extending, pairs of rows (or columns) in the multiplication table, and by analyzing simple drawings that indicate the relative size of quantities, students connect their understanding of multiplication and division with ratios and rates. Thus students expand the scope of problems for which they can use multiplication and division to solve problems, and they connect ratios and fractions. Students solve a wide variety of problems involving ratios and rates.
2. Students use the meaning of fractions, the meanings of multiplication and division, and the relationship between multiplication and division to understand and explain why the procedures for dividing fractions make sense. Students use these operations to solve problems. Students extend their previous understandings of numbers and the ordering of numbers to the full system of rational numbers, which includes negative rational numbers, and in particular negative integers. They reason about the order and absolute value of rational numbers and about the location of points in all four quadrants of the coordinate plane.
3. Students understand the use of variables in mathematical expressions. They write expressions and equations that correspond to given situations, evaluate expressions, and use expressions and formulas to solve problems. Students understand that expressions in different forms can be equivalent, and they use the properties of operations to rewrite expressions in equivalent forms. Students know that the solutions of an equation are the values of the variables that make the equation true. Students use properties of operations and the idea of maintaining the equality of both sides of an equation to solve simple one-step equations. Students construct and analyze tables, such as tables of quantities that are in equivalent ratios, and they use equations (such as $3 x$ $=y$) to describe relationships between quantities.
4. Building on and reinforcing their understanding of number, students begin to develop their ability to think statistically. Students recognize that a data distribution may not have a definite center and that different ways to measure center yield different values. The median measures center in the sense that it is roughly the middle value. The mean measures center in the sense that it is the value that each data point would take on if the total of the data values were redistributed equally, and also in the sense that it is a balance point. Students recognize that a measure of variability (interquartile range or mean absolute deviation) can also be useful for summarizing data because two very different sets of data can have the same mean and median, yet be distinguished by their variability. Students learn to describe and summarize numerical data sets, identifying clusters, peaks, gaps, and symmetry, considering the context in which the data were collected. Students in Grade 6 also build on their work with area in elementary school by reasoning about relationships among shapes to determine area, surface area, and volume. They find areas of right triangles, other triangles, and special quadrilaterals by decomposing these shapes, rearranging or removing pieces, and relating the shapes to rectangles. Using these methods, students discuss, develop, and justify
formulas for areas of triangles and parallelograms. Students find areas of polygons and surface areas of prisms and pyramids by decomposing them into pieces whose area they can determine. They reason about right rectangular prisms with fractional side lengths to extend formulas for the volume of a right rectangular prism to fractional side lengths. They prepare for work on scale drawings and constructions in Grade 7 by drawing polygons in the coordinate plane.

All the content at this grade level are connected to the Standards for Mathematical Practices. The 2013 Grade 6 Common Core Mathematics Test will include questions that require students to connect mathematical content and Standards for Mathematical Practices.

For more information about the CCLS and Standards for Mathematical Practice, please refer to http://engageny.org/resource/new-york-state-p-12-common-core-learning-standards-for-mathematics/.

Clusters, Standards, and Sequencing in Instruction and Assessment

The 2013 Grade 6 Common Core Mathematics Test will focus entirely on the Grade 6 New York State CCLS for Mathematics. As such, the test will be designed differently than in the past.

The CCLS for Mathematics are divided into standards, clusters, and domains.

- Standards define what students should understand and be able to do. In some cases, standards are further articulated into lettered components.
- Clusters are groups of related standards. Note that standards from different clusters may sometimes be closely related, because mathematics is a connected subject.
- Domains are larger groups of related clusters and standards. Standards from different domains may be closely related.

Content Emphases

The CCLS for Mathematics were designed with the understanding that not all clusters should be emphasized equally in instruction or assessment. Some clusters require greater emphasis than the others based on the time that they take to master and/or their importance to future mathematics or the demands of college and career readiness. The Grade 6 CCLS are divided into Major Clusters, Supporting Clusters, and Additional Clusters. The Major Clusters are the intended instructional focus at Grade 6 and will account for the majority of math test questions. The Supporting Clusters and Additional Clusters are Mathematics Standards that serve to both introduce and reinforce Major Clusters. The chart below details the recommended instructional focus and the percentage of test questions that assess the Major, Supporting, and Additional Clusters:

Cluster Emphases for Instruction and the 2013 Grade 6 Common Core Mathematics Test

Cluster Emphasis	Recommended Instructional Time	Approximate Number of Test Points
Major	$65-75 \%$	$70-80 \%$
Supporting	$15-25 \%$	$10-20 \%$
Additional	$5-15 \%$	$5-10 \%$

Emphasized Standards

The CCLS for Mathematics were also designed with the understanding that teachers would emphasize standards that best facilitate mastery of the most important grade-level mathematics and best position students for mastery of future mathematics. Similar to the cluster emphases, not all standards should receive similar emphasis. Within each of the clusters and domains, certain standards require more instructional and assessment emphasis.

One example of a standard needing greater emphasis is 6.RP.3, "Use ratio and rate reasoning to solve real-world and mathematical problems." In the Ratios and Proportional Relationships Domain, students
need to reach a conceptual understanding of 6.RP.1, "Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities," and 6.RP.2, "Understand the concept of a unit rate a / b associated with a ratio $a: b$," in order to be able to demonstrate an understanding of the application of those concepts in a real-world context, as 6.RP. 3 states. This logic is also demonstrated by the cluster statement, "Understand ratio concepts and use ratio reasoning to solve problems." Students must therefore show conceptual understanding of 6.RP. 1 and 6.RP. 2 in order to be able to reach the application of understanding in 6.RP.3; thus, this standard is emphasized.

An emphasis on the most critical clusters and standards allows depth and focus in learning, which is carried out through the Standards for Mathematical Practice. Without such depth and focus, attention to the Standards for Mathematical Practice would be unrealistic.

For more information about the Content Emphases, please refer to http://engageny.org/resource/math-content-emphases/.

Sequencing

The August 2012 memorandum Grades 3-8 Mathematics Testing Program Guidance: September-to-April / May-to-June Common Core Learning Standards provides guidance on aligning standards to each time period. Standards designated as September-to-April will be assessed on the 2013 Grade 6 Common Core Mathematics Test. Several standards designated as Major Clusters are included in the May-to-June instructional period. Placing these standards in the May-to-June instructional period provides more coherent September-to-April content blocks and allows for more logical sequencing for standards that closely relate to the Major Clusters of the following year. Starting with the April 2013 administration, most test questions will target more than one standard. Some questions will assess an entire cluster. As such, many individual test questions will assess Grade 6 September-to-April standards in conjunction with standards from past grades.

One of the ways the CCLS are changing instructional practices and our assessment design is through the spiraling of mathematic concepts within and across grade levels. This means that when a student has mastered a particular standard, that student has also inherently mastered the related standards that came before. It is our recommendation, therefore, that all teachers pay close attention to student mastery of May-to-June standards so that student learning can begin promptly and efficiently the following year.

For more information about the Grades 3-8 Mathematics Testing Program Guidance: September-to-April / May-to-June Common Core Learning Standards, please refer to http://www.p12.nysed.gov/assessment/math/math-ei.html.

Emphases and Sequencing

The chart below illustrates the different clusters and standards recommended for instructional emphasis. Standards that are recommended for greater emphasis are indicated with a check mark while those that are recommended for instruction after the administration of the 2013 Grade 6 Common Core Mathematics Test are indicated by the word "Post." The instructional emphasis recommended in the chart below is mirrored in the Grade 6 test design, whereby clusters and standards that are recommended for greater emphasis will be assessed in greater number. Standards recommended for greater emphasis that are designated for instruction after the administration of the 2013 Grade 6 Common Core Mathematics Test, while not tested, will be fundamental in ensuring that students are prepared for Grade 7 instruction.

Cluster Emphasis	Domain	Cluster	Standard	
Major Clusters	Ratios and Proportional Relationships	Understand ratio concepts and use ratio reasoning to solve problems.	6.RP. 1	
			6.RP. 2	
			6.RP. 3	\checkmark
	The Number System	Apply and extend previous understandings of multiplication and division to divide fractions by fractions.	6.NS. 1	
			6.NS. 5	
		Apply and extend previous	6.NS. 6	
		understandings of numbers to the	6.NS. 7	
		system of rational numbers.	6.NS. 8	
	Expressions and Equations	Apply and extend previous understandings of arithmetic to algebraic expressions.	6.EE. 1	
			6.EE. 2	
			6.EE. 3	
			6.EE. 4	
		Reason about and solve onevariable equations and inequalities.	6.EE. 5	
			6.EE. 6	
			6.EE. 7	\checkmark
			6.EE. 8	
		Represent and analyze quantitative relationships between dependent and independent variables.	6.EE. 9	
Supporting Clusters	Geometry	Solve real-world and mathematical problems involving area, surface area, and volume.	6.G. 1	
			6.G. 2	
			6.G. 3	
			6.G. 4	

Cluster Emphasis	Domain	Cluster	Standar		
Additional Clusters	The Number System	Compute fluently with multi-digit numbers and find common factors and multiples.	6.NS. 2		
			6.NS. 3		
			6.NS. 4		
	Statistics and Probability	Develop understanding of statistical variability.	6.SP. 1	\checkmark	Post
			6.SP. 2		Post
			6.SP. 3	\checkmark	Post
		Summarize and describe distributions.	6.SP. 4		Post
			6.SP. 5		Post

[^2]
The 2013 Grade 6 Common Core Mathematics Test

Testing Sessions and Times

The 2013 Grade 6 Common Core Mathematics Test will consist of three books that are administered over three successive days, with one book per day. The 2013 Grade 6 Common Core Mathematics Test is designed so that most students will complete Book 1 and Book 2 in approximately 50 minutes each and Book 3 in about 70 minutes. While it is likely that most students will complete each book sooner, students are permitted 90 minutes to complete each book. This design provides ample time for students who work at different paces. For more information regarding what students may do once they have completed their work, please refer to the section, "When Students Have Completed Their Tests."

Grade 6 Estimated Time on Task

Book	Day Administered	Estimated Time on Task
1	1	50^{*}
2	2	50^{*}
3	3	70^{*}
Total Estimated Time		170

$$
\text { * Each Testing Day will be scheduled to allow } 90 \text { minutes for completion. }
$$

The tests must be administered under standard conditions and the directions must be followed carefully. The same test administration procedures must be used with all students so that valid inferences can be drawn from the test results.

NYSED devotes great attention to the security and integrity of the NYSTP. School administrators and teachers involved in the administration of State Assessments are responsible for understanding and adhering to the instructions set forth in the 2013 School Administrator's Manual and the Teacher's Directions. These resources will be posted at
http://www.p12.nysed.gov/assessment/ei/eigen.html.

When Students Have Completed Their Tests

Students who finish their assessment before the allotted time expires should be encouraged to go back and check their work. Once the student checks his or her work, or chooses not to, examination materials should be collected by the proctor. After a student's assessment materials are collected, that student may be permitted to read silently.* This privilege is granted at the discretion of each school. No talking is permitted and no other schoolwork is permitted.
*For more detailed information about test administration, including proper procedures for talking to students during testing and handling reading materials, please refer to the 2013 School Administrator's Manual and the Teacher's Directions.

Test Design

In Grade 6, students are required to apply mathematical understandings and mathematical practices gained in the classroom in order to answer three types of questions: multiple-choice, short-response, and extended-response. Book 1 and Book 2 will consist of multiple-choice questions. Book 3 consists of short- and extended-response questions. Students will NOT be permitted to use calculators for Book 1. For Book 2 and Book 3, students must have the exclusive use of a 4-Function Calculator with a Square Root Key or a Scientific Calculator. For more information about calculator use please refer to page 15.

The chart below provides a description of the 2013 Grade 6 Test Design. Please note that the number of multiple-choice questions in Book 1 and in Book 2 includes embedded field test questions. It will not be apparent to students whether a question is an embedded field test question that does not count towards their score or an operational test question that does count towards their score.

Grade 6 Test Design

Book	Number of Multiple- Choice Questions	Number of Short- Response Questions	Number of Extended-Response Questions	Total Number of Questions
1	34	0	0	34
2	34	0	0	34
3	0	6	4	10
Total	68	6	4	78

2013 Grade 6 Common Core Mathematics Test Blueprint

All questions on the 2013 Grade 6 Common Core Mathematics Test measure the CCLS for Mathematics. The test was designed around the Content Emphases (page 4). As such, questions that assess the Major Clusters make up the majority of the test. Additionally, standards recommended for more emphasis within clusters (pages 6-7) are assessed with greater frequency.

While all questions are linked to a primary standard, many questions measure more than one standard and one or more of the Standards for Mathematical Practices. Similarly, some questions measure cluster-level understandings. As a result of the alignment to standards, clusters, and the Standards for Mathematical Practice, the tests assess students’ conceptual understanding, procedural fluency, and problem-solving abilities, rather than assessing their knowledge of isolated skills and facts.

The tables below illustrate the domain-level and cluster-level test blueprint. For more information on which clusters and standards to emphasize in instruction, please refer to pages 6-7.

Domain-Level Test Blueprint-Percent of Test Points on Grade 6 Test				
The Number System	Expressions and Equations	Ratios and Proportional Relationships	Geometry	Statistics and Probability
$15-25 \%$	$35-45 \%$	$20-30 \%$	$10-20 \%$	0%

Cluster-Emphasis Test Blueprint-Percent of Test Points on Grade 6 Test

Major Clusters	Supporting Clusters	Additional Clusters
$\mathbf{7 0 - 8 0 \%}$	$\mathbf{1 0 - 2 0 \%}$	$\mathbf{5 - 1 0 \%}$

Question Formats

The 2013 Grade 6 Common Core Mathematics Test contains multiple-choice, short-response (2-point), and extended-response (3-point) questions. For multiple-choice questions, students select the correct response from four answer choices. For short- and extended-response questions, students write an answer to an open-ended question and may be required to show their work. In some cases, they may be required to explain, in words, how they arrived at their answers.

Multiple-Choice Questions

Multiple-choice questions are designed to assess CCLS for Mathematics. Mathematics multiplechoice questions will mainly be used to assess standard algorithms and conceptual standards. Multiple-choice questions incorporate both Standards and Standards for Mathematical Practices, some in real-world applications. Many multiple-choice questions require students to complete multiple steps. Likewise, many of these questions are linked to more than one standard, drawing on the simultaneous application of multiple skills and concepts. Within answer choices, distractors ${ }^{3}$ will all be based on plausible missteps.

Short-Response Questions

Short-response questions are similar to past 2-point questions, requiring students to complete a task and show their work. Like multiple-choice questions, short-response questions will often require multiple steps, the application of multiple mathematics skills, and real-world applications. Many of the short-response questions will cover conceptual and application standards.

Extended-Response Questions

Extended-response questions are similar to past 3-point questions, asking students to show their work in completing two or more tasks or a more extensive problem. Extended-response questions allow students to show their understanding of mathematical procedures, conceptual understanding, and application. Extended-response questions may also assess student reasoning and the ability to critique the arguments of others.

Additional Assessment Resources

Sample Questions for the Grade 6 Common Core Mathematics Tests are available at

 http://engageny.org/resource/new-york-state-common-core-sample-questions Math Item Review Criteria and Multiple Representations are available at http://engageny.org/resource/common-core-assessment-design[^3]
New Mathematics Rubrics and Scoring Policies

The 2013 Grade 6 Common Core Mathematics Test will use new rubrics and scoring policies. Both the Mathematics 2-point and 3-point Rubrics have changed to reflect the new demands called for by the CCLS. Similarly, new scoring policies have been adopted to address CCLS Mathematics Standards. The new Mathematics Rubrics are as follows:

2-Point Holistic Rubric

2 Points	A 2-point response answers the question correctly. This response
-demonstrates a thorough understanding of the mathematical concepts but may contain errors that do not detract from the demonstration of understanding indicates that the student has completed the task correctly using mathematically sound procedures	
1 Point	A 1-point response is only partially correct. This response - indicates that the student has demonstrated only a partial understanding of the mathematical concepts and/or procedures in the task ecrrectly addresses some elements of the task may contain an incorrect solution but applies a mathematically appropriate process - may contain correct numerical answer(s) but required work is not provided
$\mathbf{0}$ Points	A 0-point response is incorrect, irrelevant, incoherent, or contains a correct response arrived at using an obviously incorrect procedure. Although some parts may contain correct mathematical procedures, holistically they are not sufficient to demonstrate even a limited understanding of the mathematical concepts embodied in the task.

2-Point Scoring Policies

- Scoring Policies provided for past New York State Tests will NOT apply to the 2013 Common Core Mathematics Tests.
- New Scoring Policies are provided on page 14.

3-Point Holistic Rubric

3 Points	A 3-point response answers the question correctly. This response - demonstrates a thorough understanding of the mathematical concepts but may contain errors that do not detract from the demonstration of understanding - indicates that the student has completed the task correctly, using mathematically sound procedures
2 Points	A 2-point response is partially correct. This response - demonstrates partial understanding of the mathematical concepts and/or procedures embodied in the task - addresses most aspects of the task, using mathematically sound procedures - may contain an incorrect solution but provides complete procedures, reasoning, and/or explanations - may reflect some misunderstanding of the underlying mathematical concepts and/or procedures
1 Point	A 1-point response is incomplete and exhibits many flaws but is not completely incorrect. This response - demonstrates only a limited understanding of the mathematical concepts and/or procedures embodied in the task - may address some elements of the task correctly but reaches an inadequate solution and/or provides reasoning that is faulty or incomplete - exhibits multiple flaws related to misunderstanding of important aspects of the task, misuse of mathematical procedures, or faulty mathematical reasoning - reflects a lack of essential understanding of the underlying mathematical concepts - may contain correct numerical answer(s) but required work is not provided
0 Points	A 0-point response is incorrect, irrelevant, incoherent, or contains a correct response arrived at using an obviously incorrect procedure. Although some parts may contain correct mathematical procedures, holistically they are not sufficient to demonstrate even a limited understanding of the mathematical concepts embodied in the task.

3-Point Scoring Policies

- Scoring Policies provided for past New York State Tests will NOT apply to the 2013 Common Core Mathematics Tests.
- New Scoring Policies are provided on page 14.

2013 2- and 3-Point Mathematics Scoring Policies

Below are the policies to be followed while scoring the mathematics tests for all grades:

1. If a student does the work in other than a designated "Show your work" area, that work should still be scored. (Additional paper is an allowable accommodation for a student with disabilities if indicated on the student's Individual Education Program or Section 504 Accommodation Plan.)
2. If the question requires students to show their work, and the student shows appropriate work and clearly identifies a correct answer but fails to write that answer in the answer blank, the student should still receive full credit.
3. If the question requires students to show their work, and the student shows appropriate work and arrives at the correct answer but writes an incorrect answer in the answer blank, the student should not receive full credit.
4. In questions that provide ruled lines for students to write an explanation of their work, mathematical work shown elsewhere on the page should be considered and scored.
5. If the student provides one legible response (and one response only), teachers should score the response, even if it has been crossed out.
6. If the student has written more than one response but has crossed some out, teachers should score only the response that has not been crossed out.
7. Trial-and-error responses are not subject to Scoring Policy \#6 above, since crossing out is part of the trial-and-error process.
8. If a response shows repeated occurrences of the same conceptual error within a question, the student should not be penalized more than once.
9. In questions that require students to provide bar graphs,

- in Grades 3 and 4 only, touching bars are acceptable
- in Grades 3 and 4 only, space between bars does not need to be uniform
- in all grades, widths of the bars must be consistent
- in all grades, bars must be aligned with their labels
- in all grades, scales must begin at 0 , but the 0 does not need to be written

10. In questions requiring number sentences, the number sentences must be written horizontally.
11. In pictographs, the student is permitted to use a symbol other than the one in the key, provided that the symbol is used consistently in the pictograph; the student does not need to change the symbol in the key. The student may not, however, use multiple symbols within the chart, nor may the student change the value of the symbol in the key.
12. If students are not directed to show work, any work shown will not be scored. This applies to items that do not ask for any work and items that ask for work for one part and do not ask for work in another part.

Mathematics Tools

Why Mathematics Tools?

These provisions are necessary for students to meet Standard for Mathematical Practice Five found throughout the New York State P-12 Common Core Learning Standards for Mathematics:

Use appropriate tools strategically

Mathematically proficient students consider the available tools when solving a mathematical problem. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

On prior tests that measured prior grade-level standards, small symbols (calculators, protractors, and rulers) were used to alert students that they should use math tools to help solve questions. These symbols will NOT appear on the 2013 Grade 6 Common Core Mathematics Test. It is up to the student to decide when it will be helpful to use math tools to answer a question.

Rulers and Protractors

Students in Grade 6 must have a ruler and a protractor for their exclusive use for all sessions of the test. Students with disabilities may use adapted rulers and protractors if this is indicated as a testing accommodation on the student's Individualized Education Program or Section 504 Accommodation Plan.

Note: Schools are responsible for supplying the appropriate tools for use with the Grade 6 Mathematics Test. NYSED does not provide them.

Calculators

Students in Grade 6 are NOT permitted to use calculators for Book 1. For Book 2 and for Book 3 students must have the exclusive use of a 4-function calculator with a square root key or a scientific calculator. Graphing calculators are not permitted.

Reference Sheet

A detachable reference sheet will be included in each of the three test books. For Grade the 2013 Grade 6 Common Core Mathematics Test, the reference sheet will look as follows:

Grade 6 Mathematics Reference Sheet

FORMULAS	Area $=\frac{1}{2} b h$
CONVERSIONS	Volume $=l w h$ Volume $=B h$
1 centimeter $=10$ millimeters 1 meter $=100$ centimeters $=1,000$ millimeters 1 cup $=8$ fluid ounces 1 kilometer $=1,000$ meters 1 pint $=2$ cups 1 gram $=1,000$ milligrams 1 quart $=2$ pints 1 kilogram $=1,000$ grams 1 gallon $=4$ quarts 1 pound $=16$ ounces 1 liter $=1,000$ milliliters 1 ton $=2,000$ pounds 1 kiloliter $=1,000$ liters 1 mile $=5,280$ feet 1 mile $=1,760$ yards	

[^0]: The State Education Department does not discriminate on the basis of age, color, religion, creed, disability, marital status, veteran status, national origin, race, gender, genetic predisposition or carrier status, or sexual orientation in its educational programs, services, and activities. Portions of this publication can be made available in a variety of formats, including Braille, large print, or audio tape, upon request. Inquiries concerning this policy of nondiscrimination should be directed to the Department’s Office for Diversity, Ethics, and Access, Room 530, Education Building, Albany, NY 12234.

 Copyright © 2012 by the New York State Education Department. Permission is hereby granted for school administrators and educators to reproduce these materials, located online at http://www.p12.nysed.gov/assessment/ in the quantities necessary for their schools' use, but not for sale, provided copyright notices are retained as they appear in these publications. This permission does not apply to distribution of these materials, electronically or by other means, other than for school use.

[^1]: ${ }^{1}$ See, for example, http://ccsr.uchicago.edu/publications/authentic-intellectual-work-and-standardized-tests-conflict-or-coexistence.
 ${ }^{2}$ See, for example, http://metproject.org/downloads/MET Gathering Feedback Research Paper.pdf.

[^2]: $\checkmark=$ Standards recommended for greater emphasis
 Post = Standards recommended for instruction in May-June

[^3]: ${ }^{3}$ A distractor is an incorrect response that may appear to be a plausible correct response to a student who has not mastered the skill or concept being tested.

