6MA SLM-T

Grade 6

Scoring Leader Materials

Training Set

Developed and published under contract with the New York State Education Department by Questar Assessment Inc., 5550 Upper 147 th Street West, Minneapolis, MN 55124 . Copyright © 2022 by the New York State Education Department. All rights reserved. This publication may be reproduced or transmitted for the purpose of scoring activities authorized by the New York State Education Department.

Grade 6 Mathematics Reference Sheet

CONVERSIONS

1 inch $=2.54$ centimeters	1 kilometer $=0.62$ mile	1 cup $=8$ fluid ounces
1 meter $=39.37$ inches	1 pound $=16$ ounces	1 pint $=2$ cups
1 mile $=5,280$ feet	1 pound $=0.454$ kilogram	1 quart $=2$ pints
1 mile $=1,760$ yards	1 kilogram $=2.2$ pounds	1 gallon $=4$ quarts
1 mile $=1.609$ kilometers	1 ton $=2,000$ pounds	1 gallon $=3.785$ liters
		1 liter $=0.264$ gallon
	1 liter $=1,000$ cubic centimeters	

FORMULAS
Triangle
$A=\frac{1}{2} b h$
Right Rectangular Prism
$V=B h$ or $V=I w h$

2-Point Holistic Rubric

2 Points	A 2-point response includes the correct solution to the question and demonstrates a thorough understanding of the mathematical concepts and/or procedures in the task. This response - indicates that the student has completed the task correctly, using mathematically sound procedures - contains sufficient work to demonstrate a thorough understanding of the mathematical concepts and/or procedures - may contain inconsequential errors that do not detract from the correct solution and the demonstration of a thorough understanding
1 Point	A 1-point response demonstrates only a partial understanding of the mathematical concepts and/or procedures in the task. This response - correctly addresses only some elements of the task - may contain an incorrect solution but applies a mathematically appropriate process - may contain the correct solution but required work is incomplete
0 Points*	A 0-point response is incorrect, irrelevant, incoherent, or contains a correct solution obtained using an obviously incorrect procedure. Although some elements may contain correct mathematical procedures, holistically they are not sufficient to demonstrate even a limited understanding of the mathematical concepts embodied in the task.

[^0]| 3 Points | A 3-point response includes the correct solution(s) to the question and demonstrates a thorough understanding of the mathematical concepts and/or procedures in the task.
 This response
 - indicates that the student has completed the task correctly, using mathematically sound procedures
 - contains sufficient work to demonstrate a thorough understanding of the mathematical concepts and/or procedures
 - may contain inconsequential errors that do not detract from the correct solution(s) and the demonstration of a thorough understanding |
| :---: | :---: |
| 2 Points | A 2-point response demonstrates a partial understanding of the mathematical concepts and/or procedures in the task.
 This response
 - appropriately addresses most but not all aspects of the task using mathematically sound procedures
 - may contain an incorrect solution but provides sound procedures, reasoning, and/ or explanations
 - may reflect some minor misunderstanding of the underlying mathematical concepts and/or procedures |
| 1 Point | A 1-point response demonstrates only a limited understanding of the mathematical concepts and/or procedures in the task.
 This response
 - may address some elements of the task correctly but reaches an inadequate solution and/or provides reasoning that is faulty or incomplete
 - exhibits multiple flaws related to misunderstanding of important aspects of the task, misuse of mathematical procedures, or faulty mathematical reasoning
 - reflects a lack of essential understanding of the underlying mathematical concepts
 - may contain the correct solution(s) but required work is limited |
| 0 Points* | A 0-point response is incorrect, irrelevant, incoherent, or contains a correct solution obtained using an obviously incorrect procedure. Although some elements may contain correct mathematical procedures, holistically they are not sufficient to demonstrate even a limited understanding of the mathematical concepts embodied in the task. |

[^1]
2022 2- and 3-Point Mathematics Scoring Policies

Below are the policies to be followed while scoring the mathematics tests for all grades:

1. If a student shows the work in other than a designated "Show your work" or "Explain" area, that work should still be scored.
2. If the question requires students to show their work, and the student shows appropriate work and clearly identifies a correct answer but fails to write that answer in the answer space, the student should still receive full credit.
3. If students are directed to show work or provide an explanation, a correct answer with no work shown or no explanation provided, receives no credit.
4. If students are not directed to show work, any work shown will not be scored. This applies to items that do not ask for any work and items that ask for work for one part and do not ask for work in another part.
5. If the student provides one legible response (and one response only), the rater should score the response, even if it has been crossed out.
6. If the student has written more than one response but has crossed some out, the rater should score only the response that has not been crossed out.
7. If the student provides more than one response, but does not indicate which response is to be considered the correct response and none have been crossed out, the student shall not receive full credit.
8. If the student makes a conceptual error (that is an error in understanding rather than an arithmetic or computational error), that student shall not receive more than 50% credit.
9. Trial-and-error responses are not subject to Scoring Policy \#6 above, since crossing out is part of the trial-and-error process.
10. If a response shows repeated occurrences of the same conceptual error within a question, the conceptual error should not be considered more than once in gauging the demonstrated level of understanding.
11. In questions requiring number sentences, the number sentences must be written horizontally.
12. When measuring angles with a protractor, there is a $+/-5$ degrees deviation allowed of the true measure.
13. Condition Code A is applied whenever a student who is present for a test session leaves an entire constructed-response question in that session completely blank (no response attempted). This is not to be confused with a score of zero wherein the student does respond to part or all of the question but that work results in a score of zero.

Two students, Student A and Student B, claim to know the correct representation of the expression $\frac{9}{y}(3 t)$.

- Student A represents the expression as the product of 9 and y times the product of 3 and t.
- Student B represents the expression as the quotient of 9 and y times the sum of 3 and t.

Both students' claims are incorrect. What makes each representation incorrect?
Explain your answer.

EXEMPLARY RESPONSE

39
Two students, Student A and Student B, claim to know the correct representation of the expression $\frac{9}{y}(3 t)$.

- Student A represents the expression as the product of 9 and y times the product of 3 and t.
- Student B represents the expression as the quotient of 9 and y times the sum of 3 and t.

Both students' claims are incorrect. What makes each representation incorrect?

Explain your answer.

Student A's claim is incorrect because $\frac{9}{y}$ is division, and it should be represented as "the quotient of 9 and y."
and
Student B's claim is incorrect because $3 t$ is multiplication, and it should be represented as "the product of 3 and t."
or other valid explanation

Two students, Student A and Student B, claim to know the correct representation of the expression $\frac{9}{y}(3 t)$.

- Student A represents the expression as the product of 9 and y times the product of 3 and t.
- Student B represents the expression as the quotient of 9 and y times the sum of 3 and t.

Both students' claims are incorrect. What makes each representation incorrect?
Explain your answer.

In student A's expression it said the product of 9 and y which is $9 y$, and it should be the quotient of 9 and y which is $9 / y$. Student B's expression said the sum of 3 and t which is $3+t$, it should have been the product of 3 and t , making it be 3 t .

Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the mathematical concepts and procedures in the task. The location of each mistake is correctly identified, and the mistakes are correctly explained. The explanation is complete and correct.

GUIDE PAPER 2

39
Two students, Student A and Student B, claim to know the correct representation of the expression $\frac{9}{y}(3 t)$.

- Student A represents the expression as the product of 9 and y times the product of 3 and t.
- Student B represents the expression as the quotient of 9 and y times the sum of 3 and t.

Both students' claims are incorrect. What makes each representation incorrect?
Explain your answer.
The Student's claims are incorrect becaves student A read the first Part of the expression wong white student B read the Second part of the expression wrongs. The correct representation was the quotient of 9 and y time

$$
\frac{9}{y}(3+)
$$

The quotient of 9 and y times the product of 3 and t.

1

Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the mathematical concepts and procedures in the task. The location of each mistake is correctly identified, and a correct representation of the expression is provided. The explanation is complete and correct.

GUIDE PAPER 3

Two students, Student A and Student B, claim to know the correct representation of the expression $\frac{9}{y}(3 t)$.

- Student A represents the expression as the product of 9 and y times the product of 3 and t.
- Student B represents the expression as the quotient of 9 and y times the sum of 3 and t.

Both students' claims are incorrect. What makes each representation incorrect?
Explain your answer.
Student A is wrong because $\frac{9}{y}(3 t)$ is the quotient of 9 and y times the product of 3 and t. Student Bis wrong because student B represents $\frac{9}{y}(3+)$ as the quotient of 9 and y times the $5 \sin$. of 3 and t when the actual expression is the quotient of 9 and y times the product of 3 and t.

Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the mathematical concepts and procedures in the task. The location of each mistake is correctly identified, and the mistakes are correctly explained. The explanation is complete and correct.

GUIDE PAPER 4

Two students, Student A and Student B, claim to know the correct representation of the expression $\frac{9}{y}(3 t)$.

- Student A represents the expression as the product of 9 and y times the product of 3 and t.
- Student B represents the expression as the quotient of 9 and y times the sum of 3 and t.

Both students' claims are incorrect. What makes each representation incorrect?

Explain your answer.

express on is,

Score Point 1 (out of 2 points)

This response demonstrates only a partial understanding of the mathematical concepts and procedures in the task. Although a correct representation of the expression is provided, the explanation is incomplete: the specific location of each student's mistake is not sufficiently identified. This response correctly addresses only some elements of the task.

GUIDE PAPER 5

Two students, Student A and Student B, claim to know the correct representation of the expression $\frac{9}{y}(3 t)$.

- Student A represents the expression as the product of 9 and y times the product of 3 and t.
- Student B represents the expression as the quotient of 9 and y times the sum of 3 and t.

Both students' claims are incorrect. What makes each representation incorrect?
Explain your answer.

The thing that makes both student's claims incorrect is that they represented the answer incorrect. Student A should have put the "total" instead of the word "product" at first. Student B should have put the "product" instead of the "sum".

Score Point 1 (out of 2 points)

This response demonstrates only a partial understanding of the mathematical concepts and procedures in the task. The mistake in Student B's claim is correctly identified and explained; however, Student A's mistake is incorrectly explained. This response correctly addresses only some elements of the task.

GUIDE PAPER 6

Two students, Student A and Student B, claim to know the correct representation of the expression $\frac{9}{y}(3 t)$.

- Student A represents the expression as the product of 9 and y times the product of 3 and t.
- Student B represents the expression as the quotient of 9 and y times the sum of 3 and t.

Both students' claims are incorrect. What makes each representation incorrect?
Explain your answer.

Both of them are wrong because when 2 numbers are in a fraction form you have to divide them. So the expression would look like.

9 divided by y times the product of 3 and t.

Score Point 1 (out of 2 points)

This response demonstrates only a partial understanding of the mathematical concepts and procedures in the task. A correct representation of the expression is provided; however, the error of incorrectly representing $9 / y$ term is not associated with Student A, and the specific location of Student B's error is not identified. This response correctly addresses only some elements of the task.

GUIDE PAPER 7

Two students, Student A and Student B, claim to know the correct representation of the expression $\frac{9}{y}(3 t)$.

- Student A represents the expression as the product of 9 and y times the product of 3 and t.
- Student B represents the expression as the quotient of 9 and y times the sum of 3 and t.

Both students' claims are incorrect. What makes each representation incorrect?
Explain your answer.

The represantation that makes each of the both students incorrect is that both of them have to multiply the 3 and the t to the 9 and the y. if they had make that correction probaly their answer would be right.

Score Point 0 (out of 2 points)

This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. The location of errors is not identified, and the explanation is vague and insufficiently explains the errors. Holistically, this response shows no overall understanding.

Two students, Student A and Student B, claim to know the correct representation of the
expression $\frac{9}{y}(3 t)$.

- Student A represents the expression as the product of 9 and y times the product of 3 and t.
- Student B represents the expression as the quotient of 9 and y times the sum of 3 and t.

Both students' claims are incorrect. What makes each representation incorrect?
Explain your answer.
Chat makes each claim because $\frac{9}{y}$ times the product

Score Point 0 (out of 2 points)

This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. The mistakes are not identified, and the explanation only restates the prompt that both claims are incorrect.

A track coach creates an obstacle course for his team. The coach plots the locations of three obstacles on the coordinate plane shown below.

KEY
$\square I 3$ yards
3 yards

Each unit on the coordinate plane represents 3 yards. A student starts at Obstacle A, then runs south to Obstacle B, and then runs west to Obstacle C. What is the total distance, in yards, the student runs to get from Obstacle A to Obstacle C ?
Show your work.

Answer \qquad yards

EXEMPLARY RESPONSE

A track coach creates an obstacle course for his team. The coach plots the locations of three obstacles on the coordinate plane shown below.

Each unit on the coordinate plane represents 3 yards. A student starts at Obstacle A, then runs south to Obstacle B, and then runs west to Obstacle C. What is the total distance, in yards, the student runs to get from Obstacle A to Obstacle C?

Show your work.
A to $B: 5+|-2|=7$ units

$$
7 \times 3=21 \text { yards }
$$

B to C: $3+|-7|=10$ units

$$
10 \times 3=30 \text { yards }
$$

A to $\mathrm{C}: 30+21=51$ yards
or

A to C: $5+2+3+7=17$ units

$$
17 \times 3=51 \text { yards }
$$

or other valid process

Answer 51 yards

A track coach creates an obstacle course for his team. The coach plots the locations of three obstacles on the coordinate plane shown below.

Each unit on the coordinate plane represents 3 yards. A student starts at Obstacle A, then runs south to Obstacle B, and then runs west to Obstacle C. What is the total distance, in yards, the student runs to get from Obstacle A to Obstacle C ?

Show your work.

The distance from $\mathrm{A}(3,5)$ to $\mathrm{B}(3,-2)$ is 7 . Each unit is 3 , so do
7×3 which $=21$. Obstacle $C(-7,-2)$ from distance $B=10$.
Now do 10×3 and you get 30 . So, do the distance from A to B, add the distance from B to C, and you get, 51 yards

Answer 51 yards

Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the mathematical concepts and procedures in the task. The lengths of segments AB and BC are correctly calculated and added to determine the total distance. This response is complete and correct.

GUIDE PAPER 2

A track coach creates an obstacle course for his team. The coach plots the locations of three obstacles on the coordinate plane shown below.

Each unit on the coordinate plane represents 3 yards. A student starts at Obstacle A, then runs south to Obstacle B, and then runs west to Obstacle C. What is the total distance, in yards, the student runs to get from Obstacle A to Obstacle C ?

Show your work.

Answer \qquad yards

Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the mathematical concepts and procedures in the task. The length of each grid unit is correctly added together to determine the total distance. This response is complete and correct.

GUIDE PAPER 3

A track coach creates an obstacle course for his team. The coach plots the locations of three obstacles on the coordinate plane shown below.

Each unit on the coordinate plane represents 3 yards. A student starts at Obstacle A, then runs south to Obstacle B, and then runs west to Obstacle C. What is the total distance, in yards, the student runs to get from Obstacle A to Obstacle C ?

Show your work.
$17 \times 3=51 \quad 17=$ units $\quad 3=$ each unit Answer 51 yards

Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the mathematical concepts and procedures in the task. The number of grid units from Obstacle A to Obstacle C is correctly determined from the graph and multiplied by the length of each unit in yards to determine the total distance. This response contains sufficient work to show a thorough understanding.

GUIDE PAPER 4

A track coach creates an obstacle course for his team. The coach plots the locations of three obstacles on the coordinate plane shown below.

Each unit on the cordinate plang represents yards. A student starts atobstacle A then runs south to Obstacle B and then runs west to Obstacle C. What is the total distance, in yards, the student runs to get from Obstacle A to Obstacle C ?
Show your work.

Score Point 1 (out of 2 points)

This response demonstrates only a partial understanding of the mathematical concepts and procedures in the task. The number of grid units between Obstacle A and Obstacle C is miscounted; however, the result is correctly converted to yards to determine the total distance. This response contains an incorrect solution but applies a mathematically appropriate process.

GUIDE PAPER 5

A track coach creates an obstacle course for his team. The coach plots the locations of three obstacles on the coordinate plane shown below.

Each unit on the coordinate plane represents 3 yards. A student starts at Obstacle A, then runs south to Obstacle B, and then runs west to Obstacle C. What is the total distance, in yards, the student runs to get from Obstacle A to Obstacle C ?

Show your work.

obstacle a to $c=7$ spaces 1 space $=3$ yards so $7 \times 3=21$ yards or the distance from Obstacle a to B. For obstacle B to C it is also 7 spaces or 21 yards away from these obstacles. To get the answer we have to add 21 yards by 21 yards and get 42 yards.

Answer
yards

Score Point 1 (out of 2 points)

This response demonstrates only a partial understanding of the mathematical concepts and procedures in the task. The length of segment AB is correctly calculated. The number of grid units in segment BC is miscounted; however, the result is correctly converted to yards and added to the other distance to determine the total distance. This response contains an incorrect solution but applies a mathematically appropriate process.

GUIDE PAPER 6

A track coach creates an obstacle course for his team. The coach plots the locations of three obstacles on the coordinate plane shown below.

Each unit on the coordinate plane represents (3) yards. A student starts at Obstacle A, then runs south to Obstacle B, and then runs west to Obstacle C. What is the total distance, in yards, the student runs to get from Obstacle A to Obstacle C ?

Show your work.

Answer
 yards

Score Point 1 (out of 2 points)

This response demonstrates only a partial understanding of the mathematical concepts and procedures in the task. The number of grid units between Obstacle A and Obstacle C is correctly calculated; however, the result is not converted to yards. This response correctly addresses only some elements of the task.

GUIDE PAPER 7

A track coach creates an obstacle course for his team. The coach plots the locations of three obstacles on the coordinate plane shown below.

Each unit on the coordinate plane represents 3 yards. A student starts at Obstacle A , then runs south to Obstacle B, and then runs west to Obstacle C. What is the total distance, in yards, the student runs to get from Obstacle A to Obstacle C ?

Show your work.

```
A to B=8 yrds
b to c=10 yrds
8+10=18 yards
```

Answer 18 Yards yards

Score Point 0 (out of 2 points)

This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. The number of grid units from A to B is miscounted and the conversion to yards is not addressed. Holistically, this response shows no overall understanding.

A track coach creates an obstacle course for his team. The coach plots the locations of three obstacles on the coordinate plane shown below.

Each unit on the coordinate plane represents 3 yards. A student starts at O obstacle A, then runs south to Obstacle B, and then runs west to Obstacle C. What is the total distance, in yards, the student runs to get from Obstacle A to Obstacle C ?
Show your work.

Answer
 yards

Score Point 0 (out of 2 points)

This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. The areas are inappropriately calculated and added. An incorrect solution is obtained using an incorrect procedure.

A restaurant owner orders new plates and spoons based on the information below.

- plates are sold in packages of 9
- spoons are sold in packages of 12

The restaurant owner orders an equal number of plates and spoons. What is the least number of packages of plates and packages of spoons she should order to have an equal number of plates and spoons?

Show your work.

Answer \qquad packages of plates
packages of spoons

EXEMPLARY RESPONSE

41
A restaurant owner orders new plates and spoons based on the information below.

- plates are sold in packages of 9
- spoons are sold in packages of 12

The restaurant owner orders an equal number of plates and spoons. What is the least number of packages of plates and packages of spoons she should order to have an equal number of plates and spoons?

Show your work.
Multiples of 9: $\quad 9,18,27,36$
Multiples of 12: $12,24,36$

LCM is 36

So, 4 packages of plates
3 packages of spoons

or

Prime factors of 9:
 3, 3

Prime factors of 12 : $2,2,3$
$\mathrm{LCM}=3 \times 3 \times 2 \times 2=36$
$36 \div 9=4$ packages of plates
$36 \div 12=3$ packages of spoons
or other valid process

Answer \qquad packages of plates

3

A restaurant owner orders new plates and spoons based on the information below.

- plates are sold in packages of 9
- spoons are sold in packages of 12

The restaurant owner orders an equal number of plates and spoons. What is the least number of packages of plates and packages of spoons she should order to have an equal number of plates and spoons?

Show your work.

9182736
122436
$12 \times 3=36$
$9 \times 4=36$
$36 \div 12=3$
$36 \div 9=4$

Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the mathematical concepts and procedures in the task. The multiples of 9 and 12 are correctly listed and the number of packages of plates and spoons is correctly determined using a sound procedure.

GUIDE PAPER 2

41
A restaurant owner orders new plates and spoons based on the information below.

- plates are sold in packages of 9
- spoons are sold in packages of 12

The restaurant owner orders an equal number of plates and spoons. What is the least number of packages of plates and packages of spoons she should order to have an equal number of plates and spoons?

Show your work.

27

36
Answer \qquad packages of plates
\qquad packages of spoons

Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the mathematical concepts and procedures in the task. The multiples of 9 and 12 are correctly listed and the number of packages of plates and spoons is correctly determined. This response is complete and correct.

GUIDE PAPER 3

A restaurant owner orders new plates and spoons based on the information below.

- plates are sold in packages of 9
- spoons are sold in packages of 12

The restaurant owner orders an equal number of plates and spoons. What is the least number of packages of plates and packages of spoons she should order to have an equal number of plates and spoons?

Show your work.

$$
\begin{array}{r}
9 \times 4=36 \\
12 \times 3=-86
\end{array}
$$

$$
\begin{aligned}
& 4 \text { packs or plates } \\
& 3 \text { parks or spoons }
\end{aligned}
$$

Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the mathematical concepts and procedures in the task. The number of packages of plates and spoons is correctly determined using multiplication. The trial-and-error work shows full understanding that the least common multiple has to be determined, and correctly identifies the solutions from the written multiplication facts. This response contains sufficient work to show a thorough understanding.

GUIDE PAPER 4

A restaurant owner orders new plates and spoons based on the information below.

- plates are sold in packages of 9
- spoons are sold in packages of 12

The restaurant owner orders an equal number of plates and spoons. What is the least number of packages of plates and packages of spoons she should order to have an equal number of plates and spoons?

Show your work.

Answer 3 packages of plates

2
packages of spoons

Score Point 1 (out of 2 points)

This response demonstrates only a partial understanding of the mathematical concepts and procedures in the task. The multiples of 9 and 12 are correctly listed; however, the count of packages inappropriately starts with the second package for both plates and spoons, leading to incorrect solutions. This response correctly addresses only some elements of the task.

GUIDE PAPER 5

41
A restaurant owner orders new plates and spoons based on the information below.

- plates are sold in packages of 9
- spoons are sold in packages of 12

The restaurant owner orders an equal number of plates and spoons. What is the least number of packages of plates and packages of spoons she should order to have an equal number of plates and spoons?

Show your work.

$$
\begin{aligned}
& 9 \times 4=36 \\
& 12 \times 3=36
\end{aligned}
$$

Answer \qquad packages of plates
\qquad packages of spoons

Score Point 1 (out of 2 points)

This response demonstrates only a partial understanding of the mathematical concepts and procedures in the task. The least common multiple is correctly determined using multiplication; however, the number of packages of plates and spoons is not identified. This response correctly addresses only some elements of the task.

GUIDE PAPER 6

A restaurant owner orders new plates and spoons based on the information below.

- plates are sold in packages of 9
- spoons are sold in packages of 12

The restaurant owner orders an equal number of plates and spoons. What is the least number of packages of plates and packages of spoons she should order to have an equal number of plates and spoons?

Show your work.

9	12
18	24
24	
she should order 3 packages of plates and 2 packages of spoons which will	
be the least amount of a equal amount of plates and spoons.	

Score Point 1 (out of 2 points)

This response demonstrates only a partial understanding of the mathematical concepts and procedures in the task. Although the list of multiples of 9 contains an incorrect third term, the two written lists are correctly used to determine the least common multiple and the number of packages of plates and spoons. This response contains incorrect solutions but applies a mathematically appropriate process.

GUIDE PAPER 7

A restaurant owner orders new plates and spoons based on the information below.

- plates are sold in packages of 9
- spoons are sold in packages of 12

The restaurant owner orders an equal number of plates and spoons. What is the least number of packages of plates and packages of spoons she should order to have an equal number of plates and spoons?

Show your work.
918273645546372
122436486072
$24=24$
Answer is 24

Score Point 0 (out of 2 points)

This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. Although the response contains two correct lists of multiples, the least common multiple is incorrectly determined, and the number of packages of plates and spoons is not addressed. Holistically, the work is not sufficient to show any understanding.

A restaurant owner orders new plates and spoons based on the information below.

- plates are sold in packages of 9
- spoons are sold in packages of 12

The restaurant owner orders an equal number of plates and spoons. What is the least number of packages of plates and packages of spoons she should order to have an equal number of plates and spoons?

Show your work.

Score Point 0 (out of 2 points)

This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. The two correct solutions are not supported with any work. Per Scoring Policy \#3, this response receives no credit.

A cereal box has dimensions of 12 inches, $7 \frac{3}{4}$ inches, and 2 inches. A pastry box has dimensions of $3 \frac{2}{3}$ inches, $3 \frac{1}{2}$ inches, and $2 \frac{1}{3}$ inches. What is the difference in volume, in cubic inches, between the two boxes?

Show your work.

\qquad cubic inches

EXEMPLARY RESPONSE

42
A cereal box has dimensions of 12 inches, $7 \frac{3}{4}$ inches, and 2 inches. A pastry box has dimensions of $3 \frac{2}{3}$ inches, $3 \frac{1}{2}$ inches, and $2 \frac{1}{3}$ inches. What is the difference in volume, in cubic inches, between the two boxes?

Show your work.

$$
\begin{aligned}
\mathrm{CB} \text { volume } & =12 \times 73 / 4 \times 2 \\
& =12 \times 31 / 4 \times 2 \\
& =744 / 4=186 \text { cubic inches } \\
\text { PB volume } & =32 / 3 \times 31 / 2 \times 21 / 3 \\
& =11 / 3 \times 7 / 2 \times 7 / 3 \\
& =539 / 18=2917 / 18=29.94 \text { cubic inches } \\
\mathrm{CB}-\mathrm{PB} & =186-2917 / 18 \\
& =156^{1} 18=156.05 \text { cubic inches }
\end{aligned}
$$

or other valid process

Answer 156 $1 / 18$ cubic inches

A cereal box has dimensions of 12 inches, $7 \frac{3}{4}$ inches, and 2 inches. A pastry box has dimensions of $3 \frac{2}{3}$ inches, $3 \frac{1}{2}$ inches, and $2 \frac{1}{3}$ inches. What is the difference in volume, in cubic inches, between the two boxes?

Show your work.

$$
\begin{aligned}
& \mathrm{v}=1 \mathrm{wh} \\
& \mathrm{v}=12 \times 7 \frac{3}{4} \times 2 \\
& \mathrm{v}=24 \times 7 \frac{3}{4} \\
& \mathrm{v}=186 \\
& \mathrm{v}=3 \frac{2}{3} \times 3 \frac{1}{2} \times 2 \frac{1}{3} \\
& \mathrm{v}=8 \frac{1}{6} \times 3 \frac{2}{3} \\
& \mathrm{v}=29 \frac{17}{18} \\
& 186-29 \frac{17}{18}=156 \frac{1}{18}
\end{aligned}
$$

```
the differents is
156 1/18
```

cubic inches

Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the mathematical concepts and procedures in the task. The volumes of the two boxes are correctly calculated and the difference in volume is correctly determined. This response is complete and correct.

GUIDE PAPER 2

A cereal box has dimensions of 12 inches, $7 \frac{3}{4}$ inches, and 2 inches. A pastry box has dimensions of $3 \frac{2}{3}$ inches, $3 \frac{1}{2}$ inches, and $2 \frac{1}{3}$ inches. What is the difference in volume, in cubic inches, between the two boxes?

Show your work.

Answer $156 \frac{1}{18}$ cubic inches

Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the mathematical concepts and procedures in the task. The difference in volume between the two boxes is correctly determined using sound procedures. This response is complete and correct.

GUIDE PAPER 3

42

Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the mathematical concepts and procedures in the task. The difference in volume between the two boxes is correctly determined using sound procedures. This response is complete and correct.

GUIDE PAPER 4

42
A cereal box has dimensions of 12 inches, $7 \frac{3}{4}$ inches, and 2 inches. A pastry box has dimensions of $3 \frac{2}{3}$ inches, $3 \frac{1}{2}$ inches, and $2 \frac{1}{3}$ inches. What is the difference
in volume, in cubic inches, between the two boxes?

Show your work.

$$
\begin{array}{r}
7 / 5910 \\
186.00 \\
-\quad 29.94 \\
\hline 154.06
\end{array}
$$

Answer 156.06 cubic inches

Score Point 1 (out of 2 points)

This response demonstrates only a partial understanding of the mathematical concepts and procedures in the task. The volumes of the two boxes are correctly calculated, and the volume of the pastry box is written correctly in both fraction and decimal forms. Although the repeating decimal symbol is shown in the subtraction, the answer is inappropriately rounded (should be $156.0 \overline{5}$). This response contains an incorrect solution but applies a mathematically appropriate process.

GUIDE PAPER 5

42
A cereal box has dimensions of 12 inches, $7 \frac{3}{4}$ inches, and 2 inches. A pastry box has dimensions of $3 \frac{2}{3}$ inches, $3 \frac{1}{2}$ inches, and $2 \frac{1}{3}$ inches. What is the difference
in volume, in cubic inches, between the two boxes?

Show your work.

Pastry box $3 \frac{2}{3} \times 3 \frac{1}{2}$

$$
\frac{11}{3} \times \frac{7}{2}=\frac{77}{5}=15 \frac{2}{5}
$$

Answer 150.067 cubic inches

GUIDE PAPER 6

42
A cereal box has dimensions of 12 inches, $7 \frac{3}{4}$ inches, and 2 inches. A pastry box has dimensions of $3 \frac{2}{3}$ inches, $3 \frac{1}{2}$ inches, and $2 \frac{1}{3}$ inches. What is the difference in volume, in cubic inches, between the two boxes?

Show your work.

$$
\begin{aligned}
& \frac{12}{1} \times \frac{31}{4} \times \frac{2}{1}=\frac{744}{4} \\
& \frac{11}{3} \times \frac{7}{2} \times \frac{7}{3}=\frac{539}{18}
\end{aligned}
$$

Divide 744 over 539 you will get $\frac{180}{4}$

180 over 4 cubic inches. cubic inches

Score Point 1 (out of 2 points)

This response demonstrates only a partial understanding of the mathematical concepts and procedures in the task. The two volumes are correctly calculated; however, the rest of the work is incorrect. This response correctly addresses only some elements of the task.

GUIDE PAPER 7

42

> A cereal box has dimensions of 12 inches, $7 \frac{3}{4}$ inches, and 2 inches. A pastry box has dimensions of $3 \frac{2}{3}$ inches, $3 \frac{1}{2}$ inches, and $2 \frac{1}{3}$ inches. What is the difference in volume, in cubic inches, between the two boxes?

Show your work.

$$
\begin{aligned}
& 3+\frac{2}{3} \times \frac{3+1}{2}=\frac{11}{3} \times \frac{7}{2}=\frac{77}{6}+2 \times \frac{1}{3}= \\
& \frac{77}{6} \times \frac{7}{3}=\frac{539}{18} \\
& \begin{array}{r}
518 \\
\times \quad 7 \\
\hline 6
\end{array} \\
& 18
\end{aligned}
$$

Answer \square 26 cubic inches

Score Point 0 (out of 2 points)

This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. Although the volume of the pastry box is correctly calculated, the volume of the cereal box and the difference between the two are not addressed. Holistically, this response shows no overall understanding of the task.

A cereal box has dimensions of 12 inches, $7 \frac{3}{4}$ inches, and 2 inches. A pastry box has dimensions of $3 \frac{2}{3}$ inches, $3 \frac{1}{2}$ inches, and $2 \frac{1}{3}$ inches. What is the difference in volume, in cubic inches, between the two boxes?

Show your work.

the difference betwean the boxes is that one is a holl but the other one is a fration. $=$

Score Point 0 (out of 2 points)

This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. Although the volumes of the two boxes are correctly stated, there is no work to support the obtained answers. The difference in volume is not calculated.

Two students evaluate the expression $17(4+15)$.

- Student A evaluates the expression by adding the product of 17 and 4 to the product of 17 and 15.
- Student B evaluates the expression by determining the product of 17 and 19 .

Is each student's evaluation correct or incorrect?

Explain your answer.

\qquad
\qquad
\qquad

EXEMPLARY RESPONSE

Two students evaluate the expression 17(4+15).

- Student A evaluates the expression by adding the product of 17 and 4 to the product of 17 and 15.
- Student B evaluates the expression by determining the product of 17 and 19.

Is each student's evaluation correct or incorrect?
Explain your answer.

Both students are correct.

Student A uses the distributive property.
$(17 \times 4)+(17 \times 15)=68+255=323$
and
Student B follows the order of operations to get the same answer.
$17 \times 19=323$
or other valid explanation

Two students evaluate the expression $17(4+15)$.

- Student A evaluates the expression by adding the product of 17 and 4 to the product of 17 and 15.
- Student B evaluates the expression by determining the product of 17 and 19.

Is each student's evaluation correct or incorrect?

Explain your answer.

Problem
$17(4+15)$
Answer- 323
Student A's work
$17(4+15)$
$17(4)+17(15)$
$68+255$
323
Student B's work
$17(4+15)$
17 (19)
323
Both student's evaluation is correct. Student A spearted the problem into two different mutiplcation problems and added the two products they found to get their answer. This gave them the right answer. Student B first added what was in the parenthasese and then mutiplied it by 17 to get their answer. This also gave them the right answer, and the same one as Student A's. In conclusion, both used methods to solve the expression that were correct.

Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the mathematical concepts and procedures in the task. Both evaluations are correctly identified to be correct. The explanation is complete and correct.

GUIDE PAPER 2

43
Two students evaluate the expression $17(4+15)$.

- Student A evaluates the expression by adding the product of 17 and 4 to the product of 17 and 15 .
- Student B evaluates the expression by determining the product of 17 and 19 .

Is each student's evaluation correct or incorrect?
Explain your answer.
Student A's evaluation is correct because the answer to the problem is 323 , and student B's evaluation is also correct.

Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the mathematical concepts and procedures in the task. Both evaluations are correctly identified to be correct, and a correct mathematical explanation of each method is provided to show that the answer is the same.

GUIDE PAPER 3

Two students evaluate the expression $17(4+15)$.

- Student A evaluates the expression by adding the product of 17 and 4 to the product of 17 and 15 .
- Student B evaluates the expression by determining the product of 17 and 19 .

Is each student's evaluation correct or incorrect?
Explain your answer.
Both of them are correct
Student A solved it using the distributive property
Student B solved it using order of operations

Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the mathematical concepts and procedures in the task. Both evaluations are correctly identified to be correct. The explanation is sufficient to show a thorough understanding.

GUIDE PAPER 4

Two students evaluate the expression 17(4+15).

- Student A evaluates the expression by adding the product of 17 and 4 to the product of 17 and 15.
- Student B evaluates the expression by determining the product of 17 and 19.

Is each student's evaluation correct or incorrect?
Explain your answer.
Both students are correct but did two diffrent ways to get the correct answer.

Score Point 1 (out of 2 points)

This response demonstrates only a partial understanding of the mathematical concepts and procedures in the task. Both evaluations are correctly identified to be correct; however, the explanation is incomplete because the two methods are not sufficiently explained. This response correctly addresses only some elements of the task.

GUIDE PAPER 5

Two students evaluate the expression 17(4+15).

- Student A evaluates the expression by adding the product of 17 and 4 to the product of 17 and 15.
- Student B evaluates the expression by determining the product of 17 and 19.

Is each student's evaluation correct or incorrect?
Explain your answer.

\qquad

Score Point 1 (out of 2 points)

This response demonstrates only a partial understanding of the mathematical concepts and procedures in the task. Student B's evaluation is correctly identified to be correct, and a correct mathematical explanation of this method is provided; however, the explanation of Student A's work is incorrect. This response correctly addresses only some elements of the task.

GUIDE PAPER 6

43
Two students evaluate the expression $17(4+15)$.

- Student A evaluates the expression by adding the product of 17 and 4 to the product of 17 and 15.
- Student B evaluates the expression by determining the product of 17 and 19 .

Is each student's evaluation correct or incorrect?
Explain your answer.
Student A evaluation is correct because you have to multiply 12 and 4 , and

Score Point 1 (out of 2 points)

This response demonstrates only a partial understanding of the mathematical concepts and procedures in the task. Student A's evaluation is correctly identified to be correct, and a correct explanation of this method is provided; however, Student B's work is not explained. This response correctly addresses only some elements of the task.

GUIDE PAPER 7

43
Two students evaluate the expression $17(4+15)$.

- Student A evaluates the expression by adding the product of 17 and 4 to the product of 17 and 15.
- Student B evaluates the expression by determining the product of 17 and 19 .

Is each student's evaluation correct or incorrect?

Explain your answer.

Student A: $17+4=21 \quad 17+15=32$

$$
21+32=53
$$

Student B: $\quad 4+15=19$

$$
17+19=36
$$

Student B is correct because he used Pemdas

Score Point 0 (out of 2 points)

This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. The explanation of Student A's work is incorrect. Although the response refers to "Pemdas" when describing Student B's work, the mathematical part of the explanation shows no overall understanding.

Two students evaluate the expression 17(4+15).

- Student A evaluates the expression by adding the product of 17 and 4 to the product of 17 and 15.
- Student B evaluates the expression by determining the product of 17 and 19 .

Is each student's evaluation correct or incorrect?
Explain your answer.

\qquad

Score Point 0 (out of 2 points)

This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. The answer is provided with no explanation. Per Scoring Policy \#3, this response receives no credit.

Ryan delivers flowers to two customers. He drives for 12 minutes at an average speed of 40 miles per hour to reach his first customer. He then drives for 15 minutes at an average speed of 50 miles per hour to reach his second customer. During the 27 minutes of driving time, how many total miles does Ryan drive?

Show your work.

\qquad miles

EXEMPLARY RESPONSE

Ryan delivers flowers to two customers. He drives for 12 minutes at an average speed of 40 miles per hour to reach his first customer. He then drives for 15 minutes at an average speed of 50 miles per hour to reach his second customer. During the 27 minutes of driving time, how many total miles does Ryan drive?

Show your work.

$60 \div 12=5 \quad 60 \div 15=4$
$40 \div 5=8$ miles
$50 \div 4=12.5$ miles
$8+12.5=20.5$ miles
or
$40 \div 60=2 / 3 \mathrm{miles} / \mathrm{min} \quad 50 \div 60=5 / 6 \mathrm{miles} / \mathrm{min}$
$2 / 3 \times 12=8$ miles $\quad 5 / 6 \times 15=12.5$ miles
$8+12.5=20.5$ miles
or
$60 \div 40=1.5 \mathrm{~min} / \mathrm{mile} \quad 60 \div 50=1.2 \mathrm{~min} / \mathrm{mile}$
$12 \div 1.5=8$ miles
$15 \div 1.2=12.5$ miles
$8+12.5=20.5$ miles
or other valid process

Answer \qquad miles

Ryan delivers flowers to two customers. He drives for 12 minutes at an average speed of 40 miles per hour to reach his first customer. He then drives for 15 minutes at an average speed of 50 miles per hour to reach his second customer. During the 27 minutes of driving time, how many total miles does Ryan drive?

Show your work.

$$
\begin{array}{lll}
\frac{40 \text { miles }}{60 \mathrm{~min}} & \div 5 & \frac{8 \text { miles }}{12 \mathrm{~min}} \\
\begin{array}{rll}
\frac{50 \text { miles }}{60 \mathrm{~min}} & \div 4 & \div 4
\end{array} & \frac{12.5 \text { miles }}{15 \mathrm{~min}} \\
\begin{array}{r}
12.5 \\
8.0
\end{array} & \\
20.5 \text { miles }
\end{array}
$$

Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the mathematical concepts and procedures in the task. The two distances are correctly calculated using ratios. The total distance traveled is correctly determined. This response is complete and correct.

GUIDE PAPER 2

Ryan delivers flowers to two customers. He drives for 12 minutes at an average speed of 40 miles per hour to reach his first customer. He then drives for 15 minutes at an average speed of 50 miles per hour to reach his second customer. During the 27 minutes of driving time, how many total miles does Ryan drive?

Show your work.

$$
\begin{aligned}
& 15 \text { ming at } 50 \mathrm{mph}=12.5 \text { miles in } 15 \text { ming } \\
& 12 \text { ming at } 40 \mathrm{mph}=8 \text { miles in } 12 \text { miss }
\end{aligned}
$$

$$
\begin{aligned}
& 60 \div 15=4 \\
& 50 \div 4=12.5 \\
& 60 \div 12=5 \\
& 40 \div 5=8
\end{aligned}
$$

$$
{ }^{1} 12,5
$$

$$
\begin{array}{r}
18 \\
+\quad 8 \\
\hline 20.5
\end{array}
$$

Answer
$20 \frac{1}{2}$ miles

Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the mathematical concepts and procedures in the task. The total distance traveled is correctly determined using sound procedures. This response is complete and correct.

GUIDE PAPER 3

Ryan delivers flowers to two customers. He drives for 12 minutes at an average speed of 40 miles per hour to reach his first customer. He then drives for 15 minutes at an average speed of 50 miles per hour to reach his second customer. During the 27 minutes of driving time, how many total miles does Ryan drive?

Show your work.

Answer
 miles

Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the mathematical concepts and procedures in the task. The two distances are correctly calculated by multiplying the speed by the time traveled in hours. The total distance is correctly determined. This response contains sufficient work to show a thorough understanding.

Ryan delivers flowers to two customers. He drives for 12 minutes at an average speed of 40 miles per hour to reach his first customer. He then drives for 15 minutes at an average speed of 50 miles per hour to reach his second customer. During the 27 minutes of driving time, how many total miles does Ryan drive?

Show your work.

$40 \div 60=0.66 \overline{6}$
$50 \div 60=0.833$

Answer \qquad miles

Score Point 1 (out of 2 points)
This response demonstrates only a partial understanding of the mathematical concepts and procedures in the task. The number of miles traveled per minute is correctly calculated for the two intervals; however, truncated values of these answers are used to multiply by the number of minutes, resulting in incorrect distances (7.992 and 12.495). The two distances are correctly added to determine the solution. This response contains an incorrect solution but applies a mathematically appropriate process. Per Scoring Policy \#6, the crossed out response should not be scored.

GUIDE PAPER 5

Ryan delivers flowers to two customers. He drives for 12 minutes at an average speed of 40 miles per hour to reach his first customer. He then drives for 15 minutes at an average speed of 50 miles per hour to reach his second customer. During the 27 minutes of driving time, how many total miles does Ryan drive?

Show your work.

Answer 16.5 miles

Score Point 1 (out of 2 points)

This response demonstrates only a partial understanding of the mathematical concepts and procedures in the task. The two distances are correctly calculated by dividing the speed by the corresponding number of times 12 and 15 minutes go into 60 minutes. A conceptual error is made when determining the total distance: the number of times (4) instead of miles is added to the other distance. This response correctly addresses only some elements of the task.

GUIDE PAPER 6

Ryan delivers flowers to two customers. He drives for 12 minutes at an average speed of 40 miles per hour to reach his first customer. He then drives for 15 minutes at an average speed of 50 miles per hour to reach his second customer. During the 27 minutes of driving time, how many total miles does Ryan drive?

Show your work.

8 and 12.5
$8+12.5=20.5$

Score Point 1 (out of 2 points)

This response demonstrates only a partial understanding of the mathematical concepts and procedures in the task. The total distance traveled is correctly determined; however, the work shown is limited. This response contains the correct solution, but the required work is incomplete.

GUIDE PAPER 7

Ryan delivers flowers to two customers. He drives for 12 minutes at an average speed of 40 miles per hour to reach his first customer. He then drives for 15 minutes at an average speed of 50 miles per hour to reach his second customer. During the 27 minutes of driving time, how many total miles does Ryan drive?

Show your work.
-12 min .

40 m for every

$-\frac{15 \mathrm{~min}}{3.33}$

Score Point 0 (out of 2 points)

This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. Although one of the distances is correctly calculated, the rest of the work uses incorrect procedures: dividing miles per hour by minutes, and adding miles and minutes. Holistically, this response shows no overall understanding.

Ryan delivers flowers to two customers. He drives for 12 minutes at an average speed of 40 miles per hour to reach his first customer. He then drives for 15 minutes at an average speed of 50 miles per hour to reach his second customer. During the 27 minutes of driving time, how many total miles does Ryan drive?

Show your work.

```
40\div12=3.3
50\div15=3.3
3.3+3.3=6.6
```

He drove 6.6

Score Point 0 (out of 2 points)

This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. The work contains the incorrect procedures of dividing miles per hour by minutes and adding the answers to determine the solution. Holistically, this response shows no understanding of units.

Johnny is 21 years old. He is 3 times as old as Becky. Write and solve an equation to determine Becky's age, a.

Show your work.

Answer $a=$ \qquad

EXEMPLARY RESPONSE

45
Johnny is 21 years old. He is 3 times as old as Becky. Write and solve an equation to determine Becky's age, a.

Show your work.

$$
\begin{aligned}
& 3 a=21 \quad \text { or } \quad a=21 / 3 \\
& a=7 \text { years old }
\end{aligned}
$$

or other valid process

Answer $a=$

Johnny is 21 years old. He is 3 times as old as Becky. Write and solve an equation to determine Becky's age, a.

Show your work.

Answer a =

Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the mathematical concepts and procedures in the task. Two correct equations are written, and Becky's age is correctly determined. This response is complete and correct.

GUIDE PAPER 2

45
Johnny is $\mathbf{2 1}$ years old. He is 3 times as old as Becky. Write and solve an equation to determine Becky's age, a.

Show your work.

$$
\begin{aligned}
& 21 \div 3=a \\
& 21 \div 3=7 \\
& 7 \times 3=21
\end{aligned}
$$

Answer $a=7$

Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the mathematical concepts and procedures in the task. A correct equation is written, and it is correctly solved to determine the solution. This response is complete and correct.

GUIDE PAPER 3

Johnny is 21 years old. He is 3 times as old as Becky. Write and solve an equation to determine Becky's age, a.

Show your work.

$$
\begin{aligned}
& \frac{21}{a}=3 \\
& a=7
\end{aligned}
$$

Answer a $=7$

Score Point 2 (out of 2 points)

This response demonstrates a thorough understanding of the mathematical concepts and procedures in the task. A correct equation is written, and it is correctly solved to determine the solution. This response contains sufficient work to show a thorough understanding.

GUIDE PAPER 4

45
Johnny is 21 years old. He is 3 times as old as Becky. Write and solve an equation to determine Becky's age, a.

Show your work.

```
Johnny = 21 years old
Becky = 21\div3=7 years old
```


Score Point 1 (out of 2 points)

This response demonstrates only a partial understanding of the mathematical concepts and procedures in the task. Becky's age is correctly determined; however, the written equation does not have a variable. Using "Becky" for a variable is insufficient to show understanding of how to write an algebraic equation. This response correctly addresses only some elements of the task.

Johnny is 21 years old. He is 3 times as old as Becky. Write and solve an equation to determine Becky's age, a.

Show your work.

Score Point 1 (out of 2 points)
This response demonstrates only a partial understanding of the mathematical concepts and procedures in the task. A correct equation is written; however, Becky's age is not calculated. This response correctly addresses only some elements of the task.

GUIDE PAPER 6

45
Johnny is 21 years old. He is 3 times as old as Becky. Write and solve an equation to determine Becky's age, a.

Show your work.

$$
\begin{aligned}
& 7 \times 3=21 \\
& 21 \div 3=7
\end{aligned}
$$

Answer $a=\square$

Score Point 1 (out of 2 points)

This response demonstrates only a partial understanding of the mathematical concepts and procedures in the task. Becky's age is correctly determined; however, the written equations do not have a variable. This response correctly addresses only some elements of the task.

GUIDE PAPER 7

45
Johnny is 21 years old. He is 3 times as old as Becky. Write and solve an equation to determine Becky's age, a.

Show your work.

```
j= johnnys age
B=becky
23j/b
```

Answer $a=7$

Score Point 0 (out of 2 points)

This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. Although the correct solution is provided, the work contains an incorrect procedure and does not support the calculated solution.

Johnny is 21 years old. He is 3 times as old as Becky. Write and solve an equation to determine Becky's age, a.

Show your work.

Score Point 0 (out of 2 points)

This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. An incorrect solution is obtained using an incorrect procedure.

An office supply store sells boxes of pencils. Each box contains 160 pencils. Write an equation that represents the total number of pencils, y, in x boxes.

Equation

If $x=12$ for one day of sales, use your equation to find the total number of pencils the supply store sells.

Show your work.

Answer \qquad pencils

EXEMPLARY RESPONSE

46
An office supply store sells boxes of pencils. Each box contains 160 pencils. Write an equation that represents the total number of pencils, y, in x boxes.
Equation $y=160 x \quad$ or other equivalent equation

If $x=12$ for one day of sales, use your equation to find the total number of pencils the supply store sells.

Show your work.
$y=160 \times 12$
$y=1,920$

Answer $\underbrace{\text { 1,920 }}_{\text {penciss }}$

An office supply store sells boxes of pencils. [Each box contains 160 pencils] Write an equation that represents the total number of pencils, y, in x boxes.]

If $x=12$ for one day of sales, use your equation to find the total number of pencils the supply store sells.

Show your work.
$\begin{array}{r}12 \\ \hline 320\end{array}$
(1a) $\cdot 160=y$
$\frac{1600}{1.920}$

Answer 1,920 pencils

Score Point 3 (out of 3 points)

This response demonstrates a thorough understanding of the mathematical concepts and procedures in the task. A correct equation is written, and it is correctly used to determine the solution.

GUIDE PAPER 2

An office supply store sells boxes of pencils. Each box contains 160 pencils. Write an equation that represents the total number of pencils, y, in x boxes.
\square

If $x=12$ for one day of sales, use your equation to find the total number of pencils the supply store sells.

Show your work.

$$
160 \times 12=1920
$$

```
1920
```

Answer
\square pencils

Score Point 3 (out of 3 points)

This response demonstrates a thorough understanding of the mathematical concepts and procedures in the task. A correct equation is written, and the number of pencils is correctly determined using a sound procedure.

GUIDE PAPER 3

An office supply store sells boxes of pencils. Each box contains 160 pencils. Write an
equation that represents the total number of pencils, y, in x boxes.
Equation
If $x=12$ for one day of sales, use your equation to find the total number of pencils
the supply store sells.

Show your work.

Answer
 pencils

Score Point 3 (out of 3 points)

This response demonstrates a thorough understanding of the mathematical concepts and procedures in the task. A correct equation is written, and the number of pencils is correctly determined using a sound procedure.

GUIDE PAPER 4

46
An office supply store sells boxes of pencils. Each box contains 160 pencils. Write an equation that represents the total number of pencils, y, in x boxes.

Equation $1 d y=x$
If $x=12$ for one day of sales, use your equation to find the total number of pencils the supply store sells.

Show your work.

anger 1920 pencils

Score Point 2 (out of 3 points)

This response demonstrates a partial understanding of the mathematical concepts and procedures in the task. The number of pencils is correctly determined; however, the written equation is incorrect: x and y variables are transposed. This response reflects some minor misunderstanding of the underlying mathematical concepts and procedures.

GUIDE PAPER 5

An office supply store sells boxes of pencils. Each box contains 160 pencils. Write an equation that represents the total number of pencils, y, in x boxes.
\square

If $x=12$ for one day of sales, use your equation to find the total number of pencils the supply store sells.

Show your work.
there are 1,920 pencils were sold.

```
1,920 pencils were sold.
```

pencils

Score Point 2 (out of 3 points)

This response demonstrates a partial understanding of the mathematical concepts and procedures in the task. Although a correct equation is written and the number of pencils is correctly calculated, the work is incomplete to show how the solution is obtained. This response appropriately addresses most, but not all, aspects of the task.

GUIDE PAPER 6

An office supply store sells boxes of pencils. Each box contains 160 pencils. Write an equation that represents the total number of pencils, y, in x boxes.
\square

If $x=12$ for one day of sales, use your equation to find the total number of pencils the supply store sells.

Show your work.

```
160\times12=1920
```

the supplie store sells 1920 pensils in one day. pencils

Score Point 2 (out of 3 points)

This response demonstrates a partial understanding of the mathematical concepts and procedures in the task. The number of pencils is correctly calculated using a sound procedure; however, an incorrect expression is provided for the equation. This response appropriately addresses most, but not all, aspects of the task.

GUIDE PAPER 7

46
An office supply store sells boxes of pencils. Each box contains 160 pencils. Write an equation that represents the total number of pencils, y, in x boxes.

Equation $160=y \cdot x$

If $x=12$ for one day of sales, use your equation to find the total number of pencils the supply store sells.

Show your work.

$$
\begin{aligned}
& 160=y \cdot 12 \\
& x=12
\end{aligned}
$$

$$
\begin{aligned}
& 2 \\
& 160 \cdot 12=1,920
\end{aligned}
$$

Answer 1,920 pencils

Score Point 1 (out of 3 points)

This response demonstrates only a limited understanding of the mathematical concepts and procedures in the task. Although the number of pencils is correctly calculated, the work shows confusion when using an incorrect equation to calculate the correct solution. This response reflects a lack of essential understanding of the underlying mathematical concepts.

An office supply store sells boxes of pencils. Each box contains 160 pencils. Write an equation that represents the total number of pencils, y, in x boxes.
\square

If $x=12$ for one day of sales, use your equation to find the total number of pencils the supply store sells.

Show your work.

$$
\begin{aligned}
& 60 \mathrm{y}=1 \mathrm{x} \\
& \mathrm{y}=12 \mathrm{x} \\
& 160 \times 12=1920
\end{aligned}
$$

for one day of

 12 there is 1920 pencils in eachbox.
Answer pencils

Score Point 1 (out of 3 points)

This response demonstrates only a limited understanding of the mathematical concepts and procedures in the task. Although the number of pencils is correctly calculated, the two equations using variables x and y are incorrect, and the solution is incorrectly interpreted. This response exhibits multiple flaws related to misunderstanding of important aspects of the task.

GUIDE PAPER 9

An office supply store sells boxes of pencils. Each box contains 160 pencils. Write an equation that represents the total number of pencils, y, in x boxes.

If $x=12$ for one day of sales, use your equation to find the total number of pencils the supply store sells.

Show your work.
$12 \times 160 \mathrm{y}=1920$ pencils

Score Point 1 (out of 3 points)

This response demonstrates only a limited understanding of the mathematical concepts and procedures in the task. Although the number of pencils is correctly determined, the work shows confusion of how to use a variable when calculating the correct solution. This response reflects a lack of essential understanding of the underlying mathematical concepts.

GUIDE PAPER 10

An office supply store sells boxes of pencils. Each box contains 160 pencils. Write an equation that represents the total number of pencils, y, in x boxes.
\square
$160 y=1 x$

If $x=12$ for one day of sales, use your equation to find the total number of pencils the supply store sells.

Show your work.

$$
\begin{aligned}
& 1 \mathrm{x} \times 12=12 \mathrm{x} \\
& 120 \mathrm{x} 12=1440
\end{aligned}
$$

Score Point 0 (out of 3 points)

This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. An incorrect equation is written with variables x and y transposed. An irrelevant equation is written in the work area and an incorrect value of 120 is used when determining a solution. Holistically, this response shows no overall understanding.

An office supply store sells boxes of pencils. Each box contains 160 pencils. Write an equation that represents the total number of pencils, y, in x boxes.

If $x=12$ for one day of sales, use your equation to find the total number of pencils the supply store sells.

Show your work.

$x=148$ pencils

Score Point 0 (out of 3 points)

This response is not sufficient to demonstrate even a limited understanding of the mathematical concepts in the task. An incorrect solution is obtained using an incorrect procedure. The work shows no understanding.

[^0]: * Condition Code A is applied whenever a student who is present for a test session leaves an entire constructed-response question in that session completely blank (no response attempted).

[^1]: * Condition Code A is applied whenever a student who is present for a test session leaves an entire constructed-response question in that session completely blank (no response attempted).

