31 As shown in the diagram below, a ladder 12 feet long leans against a wall and makes an angle of 72° with the ground.

Find, to the nearest tenth of a foot, the distance from the wall to the base of the ladder.

\[
\cos 72^\circ = \frac{x}{12}
\]

\[
x = 12 \cos 72^\circ
\]

\[
x = 3.7\text{ ft}
\]

Score 2: The student has a complete and correct response.
31 As shown in the diagram below, a ladder 12 feet long leans against a wall and makes an angle of 72° with the ground.

Find, to the nearest tenth of a foot, the distance from the wall to the base of the ladder.

\[
\sin 72^\circ = \frac{w}{12} \quad w = 12 \times \sin 72^\circ = 11.4
\]

\[
12^2 = x^2 + 11.4^2
\]

\[
x^2 = 144 - 129.96 = 14.04
\]

\[
x = \sqrt{14.04} = 3.7
\]

Score 2: The student used the correct trigonometric ratio to find the height of the wall. The student then used the Pythagorean Theorem to correctly find the distance from the wall.
31 As shown in the diagram below, a ladder 12 feet long leans against a wall and makes an angle of 72° with the ground.

Find, to the nearest tenth of a foot, the distance from the wall to the base of the ladder.

\[
\cos (72) = \frac{x}{12}
\]

Score 1: The student wrote a correct trigonometric equation, but showed no further correct work.
As shown in the diagram below, a ladder 12 feet long leans against a wall and makes an angle of 72º with the ground.

Find, to the nearest tenth of a foot, the distance from the wall to the base of the ladder.

\[\cos \theta = \frac{A}{H} \]
\[\cos 72º = \frac{x}{12} \]
\[12 \cos 72º = x \]
\[3.708 \ldots \approx x \]

\[\therefore H \approx x \]

\[\text{let } x = \text{distance from wall to base of ladder} \]

Score 1: The student showed appropriate work, but made a rounding error by finding the answer to the nearest whole number instead of the nearest tenth.
31 As shown in the diagram below, a ladder 12 feet long leans against a wall and makes an angle of 72° with the ground.

Find, to the nearest tenth of a foot, the distance from the wall to the base of the ladder.

\[
\sin 72° = \frac{x}{12}
\]

\[
\frac{0.95}{1} = \frac{x}{12}
\]

\[x = 11.4\]

Score 1: The student used an incorrect trigonometric function.
Question 31

31 As shown in the diagram below, a ladder 12 feet long leans against a wall and makes an angle of 72° with the ground.

Find, to the nearest tenth of a foot, the distance from the wall to the base of the ladder.

\[
\sin 72 = \frac{x}{12}
\]

\[
x = 11.4126
\]

\[
\boxed{x = 11.4}
\]

Score 1: The student made a conceptual error by finding the height of the wall instead of the distance from the wall to the ladder.
31 As shown in the diagram below, a ladder 12 feet long leans against a wall and makes an angle of 72° with the ground.

Find, to the nearest tenth of a foot, the distance from the wall to the base of the ladder.

\[
\cos 72^\circ = \frac{x}{12}
\]

\[
x = -11.6
\]

Score 1: The student made an error by using radian mode instead of degree mode in the calculator.
31 As shown in the diagram below, a ladder 12 feet long leans against a wall and makes an angle of 72° with the ground.

Find, to the nearest tenth of a foot, the distance from the wall to the base of the ladder.

Score 0: The student made two errors by finding the height of the wall and rounding to the nearest foot.
31 As shown in the diagram below, a ladder 12 feet long leans against a wall and makes an angle of 72° with the ground.

Find, to the nearest tenth of a foot, the distance from the wall to the base of the ladder.

Score 0: The student wrote the trigonometric ratio incorrectly and did not calculate the answer.
32 Carla bought a dress at a sale for 20% off the original price. The sale price of the dress was $28.80. Find the original price of the dress, in dollars.

\[x = \text{Original Price} \]
\[100\% - 20\% = 80\% \]
\[\therefore 0.80x = 28.80 \]
\[x = \frac{28.80}{0.80} = 36 \]

Dress was $36.00

Score: 2 The student has a complete and correct response.
32 Carla bought a dress at a sale for 20% off the original price. The sale price of the dress was $28.80. Find the original price of the dress, in dollars.

\[
\frac{28.80}{x} = \frac{100 - 20}{100} = \frac{80}{100}
\]

\[80x = 2880\]

\[x = \frac{2880}{80} = 36\]

$36

Score: 2 The student has a complete and correct response.
32 Carla bought a dress at a sale for 20% off the original price. The sale price of the dress was $28.80. Find the original price of the dress, in dollars.

\[
\frac{28.8}{0.8} = 36
\]

\[
\frac{36}{0.8} = 23.04
\]

Score: 1 The student made one conceptual error by taking 80% of $28.80.
Question 32

32 Carla bought a dress at a sale for 20% off the original price. The sale price of the dress was $28.80. Find the original price of the dress, in dollars.

\[
\begin{align*}
100 + 20 &= 120\% \\
28.80 \times 1.20 &= 34.56 \\
\$\ 34.56
\end{align*}
\]

Score: 1 The student made one conceptual error by taking 120% of $28.80.
Carla bought a dress at a sale for 20% off the original price. The sale price of the dress was $28.80. Find the original price of the dress, in dollars.

\[100x - 20x = 28.80\]
\[80x = 28.80\]
\[x = \frac{28.80}{80} = 0.36\]
\[\$ = 0.36\]

Score: 1 The student made a conceptual error by not writing percentages as decimals.
32 Carla bought a dress at a sale for 20% off the original price. The sale price of the dress was $28.80. Find the original price of the dress, in dollars.

\[
\begin{align*}
28.8 \\
& \times 0.2 \\
& = 5.76 \\
28.80 \\
+ & 5.76 \\
& = 34.56
\end{align*}
\]

Score: 1 The student made one conceptual error by taking 120% of $28.80.
32 Carla bought a dress at a sale for 20% off the original price. The sale price of the dress was $28.80. Find the original price of the dress, in dollars.

\[
\begin{align*}
28.80 \\
+ 0.20 \\
\hline
29.00
\end{align*}
\]

Score: 0 The student showed completely irrelevant work.
32 Carla bought a dress at a sale for 20% off the original price. The sale price of the dress was $28.80. Find the original price of the dress, in dollars.

\[
\frac{28.8}{0.2} = 144
\]

\$ 144

Score: 0 The student showed completely irrelevant work.
33 The probability that a student owns a dog is $\frac{1}{3}$. The probability that the same student owns a dog and a cat is $\frac{2}{15}$. Determine the probability that the student owns a cat.

\[\text{prob. dog} = \frac{1}{3} \]
\[\text{prob. cat} = x \]
\[\frac{1}{3} \cdot x = \frac{2}{15} \]
\[\left(\frac{x}{1} \right) \frac{1}{3} \cdot x = \frac{2}{15} \]
\[x = \frac{2}{5} \]

Score: 2 The student has a complete and correct response.
33 The probability that a student owns a dog is \(\frac{1}{3} \). The probability that the same student owns a dog and a cat is \(\frac{2}{15} \). Determine the probability that the student owns a cat.

\[
\frac{2}{15} \div \frac{1}{3} = \frac{2}{5}
\]

Score: 2 The student has a complete and correct response.
Question 33

33 The probability that a student owns a dog is \(\frac{1}{3} \). The probability that the same student owns a dog and a cat is \(\frac{2}{15} \). Determine the probability that the student owns a cat.

\[
\frac{\text{P(dog and cat)}}{\text{P(dog)}} = \frac{\frac{2}{15}}{\frac{1}{3}} = \frac{2}{5} \\
\frac{\text{P(dog and cat)}}{\text{P(dog)}} = \frac{\frac{2}{15}}{\frac{1}{3}} = \frac{2}{5} \\
\text{P(dog and cat)} = \frac{1}{5}
\]

Score: 1 The student made a conceptual error by subtracting rather than dividing.
33 The probability that a student owns a dog is $\frac{1}{3}$. The probability that the same student owns a dog and a cat is $\frac{2}{15}$. Determine the probability that the student owns a cat.

\[
\frac{1}{3} \times \frac{2}{15} = \frac{10}{45} = \frac{2}{9}
\]

Score: 1 The student made a conceptual error by multiplying instead of dividing.
33 The probability that a student owns a dog is \(\frac{1}{3} \). The probability that the same student owns a dog and a cat is \(\frac{2}{15} \). Determine the probability that the student owns a cat.

Score: 0 The student wrote a correct response that was obtained by an obviously incorrect procedure.
A DVD costs twice as much as a music CD. Jack buys 2 DVDs and 2 CDs and spends $45. Determine how much one CD costs, in dollars. [Only an algebraic solution can receive full credit.]

\[x = \text{Cost of CD} \]
\[2x = \text{Cost of DVD} \]

\[2(2x) + 2(x) = 45 \]
\[4x + 2x = 6x = 45 \]
\[x = 7.5 \]

Score: 3 The student has a complete and correct response.
Question 34

34 A DVD costs twice as much as a music CD. Jack buys 2 DVDs and 2 CDs and spends $45. Determine how much one CD costs, in dollars. [Only an algebraic solution can receive full credit.]

\[
\begin{align*}
\text{let } x &= \text{Cost of music CD} \\
\text{let } 2x &= \text{Cost of DVD} \\
2(2x) + 2x &= 45 \\
4x + 2x &= 45 \\
6x &= 45 \\
\frac{6x}{6} &= \frac{45}{6} \\
x &= 7.50
\end{align*}
\]

Score: 3 The student has a complete and correct response.
Question 34

34 A DVD costs twice as much as a music CD. Jack buys 2 DVDs and 2 CDs and spends $45. Determine how much one CD costs, in dollars. [Only an algebraic solution can receive full credit.]

\[
\text{Cost of DVD} = x \\
\text{Cost of CD music} = \frac{1}{2}x \\
2x + \frac{1}{2}x = 45 \\
\frac{5}{2}x = 45 \\
x = 15
\]

Score: 2 The student showed a correct method, but calculated the cost of a DVD instead of a CD.
34 A DVD costs twice as much as a music CD. Jack buys 2 DVDs and 2 CDs and spends $45. Determine how much one CD costs, in dollars. [Only an algebraic solution can receive full credit.]

\[\text{CD cost} = m \\
\text{DVD cost} = 2m \\
2m + w = 45 \\
5w = 45 \\
w = 9 \]

Score: 2 The student made one error by not considering the purchase of two CDs.
A DVD costs twice as much as a music CD. Jack buys 2 DVDs and 2 CDs and spends $45. Determine how much one CD costs, in dollars. [Only an algebraic solution can receive full credit.]

\[
2x + 2x = 45 \\
4x = 45 \\
x = 11.25 \\
\$ = 11.25
\]

Score: 1 The student made one conceptual error in writing an equation where the cost of a DVD is equal to the cost of a CD.
Question 34

34 A DVD costs twice as much as a music CD. Jack buys 2 DVDs and 2 CDs and spends $45. Determine how much one CD costs, in dollars. [Only an algebraic solution can receive full credit.]

\[
\begin{align*}
\text{Dvd} &= 2\text{Cd} \\
2\text{Dvd} + 2\text{Cd} &= 45
\end{align*}
\]

Score: 1 The student wrote a correct system of equations, but showed no further correct work.
34 A DVD costs twice as much as a music CD. Jack buys 2 DVDs and 2 CDs and spends $45. Determine how much one CD costs, in dollars. [Only an algebraic solution can receive full credit.]

\[CD = 7.5 \]
\[DVD = 15 \]
\[30 + 15 = 45 \]

Score: 1 The student wrote the correct price of a CD, but used a method other than algebraic.
Question 34

34 A DVD costs twice as much as a music CD. Jack buys 2 DVDs and 2 CDs and spends $45. Determine how much one CD costs, in dollars. [Only an algebraic solution can receive full credit.]

Let \(x = \text{cost of DVD} \)
\(2x = \text{cost of CD} \)

\(2x + 4x = 45 \)
\(6x = 45 \)
\(x = 7.5 \)

Cost of CD = \(2 \times 7.5 \)
\[= 15 \]

Score: 1 The student made one conceptual error by assuming that the cost of a CD is twice the cost of a DVD.
A DVD costs twice as much as a music CD. Jack buys 2 DVDs and 2 CDs and spends $45. Determine how much one CD costs, in dollars. [Only an algebraic solution can receive full credit.]

\[
2 \text{DVD} - 2 \text{CD} + 45 = 2 \text{DVD} - 47 \text{CD} \]

\[2 \text{DVD} + 47\]

Score: 0 The student showed completely incorrect work.
A DVD costs twice as much as a music CD. Jack buys 2 DVDs and 2 CDs and spends $45. Determine how much one CD costs, in dollars. [Only an algebraic solution can receive full credit.]

\[x = CD \]
\[2x = DVD \]
\[2x \cdot 4x = 45 \]
\[8x = 45 \]
\[x = 45 / 8 = 5.625 \]

Score: 0 The student made one conceptual error setting up the equation and a second error when solving the equation.
Question 35

35 Noj has the following test scores:

76, 84, 69, 74, 91

His teacher will allow him to retake the test on which he scored lowest. Noj wants an average of \textit{at least} 82. Determine the \textit{least} number of additional points Noj must score on the retest.

\[
\text{Average right now} = \frac{76 + 84 + 69 + 74 + 91}{5} = 82.8
\]

\[
82 \times 5 = 410
\]

\[
410 - 76 - 84 - 74 - 91 = 85
\]

\[
85 \text{points} = 16
\]

\[
16 \text{ points more}
\]

Score: 3 The student has a complete and correct response.
Noj has the following test scores:

76, 84, 69, 74, 91

His teacher will allow him to retake the test on which he scored lowest. Noj wants an average of at least 82. Determine the least number of additional points Noj must score on the retest.

\[
\frac{76 + 84 + 74 + 91 + 69 + x}{5} \geq 82
\]

\[
\frac{394 + x}{5} \geq 82
\]

\[
x \geq 160
\]

\[
\text{least \# \ points} = 160
\]

Score: 3 The student has a complete and correct response.
35 Noj has the following test scores:

76, 84, 69, 74, 91

His teacher will allow him to retake the test on which he scored lowest. Noj wants an average of at least 82. Determine the least number of additional points Noj must score on the retest.

\[
\frac{76 + 84 + 67 + 74 + 91}{5} = 82.2
\]

\[
82 \times 5 = 410
\]

\[
76 + 84 + x + 74 + 91 = 410
\]

\[
x = 85
\]

\[
85 - 67 = \boxed{18}
\]

Score: 2 The student made a transcription error by writing 67 instead of 69.
35 Noj has the following test scores:

76, 84, 69, 74, 91

His teacher will allow him to retake the test on which he scored lowest. Noj wants an average of at least 82. Determine the least number of additional points Noj must score on the retest.

\[
\frac{76 + 84 + 69 + 74 + 91}{5} = 78.8
\]

69 = lowest score

\[
\frac{76 + 84 + x + 74 + 91}{5} = 82
\]

\[x = 85\]

Must score 85 or higher

Score: 2 The student showed work to find the new grade of 85, but did not find the number of additional points needed.
Question 35

Noj has the following test scores:

76, 84, 69, 74, 91

His teacher will allow him to retake the test on which he scored lowest. Noj wants an average of at least 82. Determine the least number of additional points Noj must score on the retest.

\[
\begin{align*}
69 + 76 + 74 + 84 + 91 &= 394 \\
394 \div 5 &= 78.8 \\
\end{align*}
\]

\[
82.5 = 410
\]

\[
x + 76 + 74 + 84 + 91 = 410
\]

\[
x = 85
\]

\[
410 \div 5 = 82
\]

\[
\begin{array}{c}
82 \\
- 69 \\
\hline
13
\end{array}
\]

means that Noj must score at least 13 more points to get an average of at least 82.

Score: 2 The student showed work to find the new grade of 85, but showed no further correct work.
35 Noj has the following test scores:

76, 84, 69, 74, 91

His teacher will allow him to retake the test on which he scored lowest. Noj wants an average of at least 82. Determine the least number of additional points Noj must score on the retest.

\[
\frac{76 + 84 + 69 + 74 + 91}{5} = 78.8
\]

\[
\begin{array}{c}
82 \\
- 78.8 \\
\hline
3.2
\end{array}
\]

Score: 1 The student made a conceptual error by subtracting the current average from the target average.
35 Noj has the following test scores:

76, 84, 69, 74, 91

His teacher will allow him to retake the test on which he scored lowest. Noj wants an average of \textit{at least} 82. Determine the \textit{least} number of additional points Noj must score on the retest.

\[
\frac{76 + 84 + 69 + 74 + 91}{5} = 82.8 \text{ average}
\]

Score: 0 The student only found the average of the original test scores, which is insufficient to answer the question.
Noj has the following test scores:

76, 84, 69, 74, 91

His teacher will allow him to retake the test on which he scored lowest. Noj wants an average of at least 82. Determine the least number of additional points Noj must score on the retest.

\[
\frac{76 + 84 + 74 + 91 + x}{5} = 82
\]

\[
\frac{325 + x}{5} = 82
\]

\[
\frac{65 + x}{5} = 16.5
\]

\[
x = 17
\]

Score: 0 The student made a conceptual error when dividing 325 + x by 5. Then made a second conceptual error by using the new test score as the additional points needed.
35 Noj has the following test scores:

76, 84, 69, 74, 91

His teacher will allow him to retake the test on which he scored lowest. Noj wants an average of at least 82. Determine the least number of additional points Noj must score on the retest.

Score: 0 The student showed irrelevant work.
Noj has the following test scores:

76, 84, 69, 74, 91

His teacher will allow him to retake the test on which he scored lowest. Noj wants an average of at least 82. Determine the least number of additional points Noj must score on the retest.

Score: 0 The correct work the student showed is insufficient.
Graph $y < x$ and $x > 5$ on the axes below.

State the coordinates of a point in the solution set.

$(7, 1)$

Score: 3 The student has a complete and correct response.
36 Graph $y < x$ and $x > 5$ on the axes below.

State the coordinates of a point in the solution set.

Score: 2 The student made one graphing error by not shading $x > 5$.

$\left(\eta, -1 \right)$
36 Graph $y < x$ and $x > 5$ on the axes below.

State the coordinates of a point in the solution set.

Score: 2 The student graphed both inequalities correctly, but did not label at least one. The coordinates of a point within the solution set are stated.
The student drew both graphs correctly and labeled one, but did not state a point in the solution set.

Score: 2 The student drew both graphs correctly and labeled one, but did not state a point in the solution set.
36 Graph \(y < x \) and \(x > 5 \) on the axes below.

State the coordinates of a point in the solution set.

\((-7, 9)\)

Score: 1 The student made two graphing errors, graphing solid boundary lines and shading \(y < x \) incorrectly, but stated appropriate coordinates.
36 Graph $y < x$ and $x > 5$ on the axes below.

State the coordinates of a point in the solution set.

(7,1) is in the solution set.

Score: 1 The student made one conceptual error by graphing $y < 5$ instead of $y < x$.
36 Graph \(u < x \) and \(x > 5 \) on the axes below.

State the coordinates of a point in the solution set.

\((5, 5) \)

Score: 1 The student made a conceptual error by graphing equations instead of inequalities. The correct point of intersection was stated.
36 Graph \(y < x \) and \(x > 5 \) on the axes below.

State the coordinates of a point in the solution set.

\[(3, 5) \]

Score: 0 The student has a completely incorrect response.
36 Graph $y < x$ and $x > 5$ on the axes below.

State the coordinates of a point in the solution set.

$\left(2, -5\right)$

Score: 0 The student made a conceptional error graphing $y < x$ and graphed $x = 5$.
37 The Rock Solid Concrete Company has been asked to pave a rectangular area surrounding a circular fountain with a diameter of 8 feet, as shown in the diagram.

Find the area, to the nearest square foot, that must be paved.

\[
A = \pi r^2 \\
A = \pi (4)^2 \\
A = 50.26548 \\
500 - 16\pi \\
A = 489.734 \\
A = 489.8 \\
A = 490 \text{ sq. ft.}
\]

Find the cost, in dollars, of paving the area if the Rock Solid Concrete Company charges $8.95 per square foot.

\[
\frac{490}{8.95} = 543.855
\]

Score: 4 The student has a complete and correct response.
37 The Rock Solid Concrete Company has been asked to pave a rectangular area surrounding a circular fountain with a diameter of 8 feet, as shown in the diagram.

Find the area, to the nearest square foot, that must be paved.

\[
\text{rectangle - fountain} \\
36 \times 15 - 16\pi = 489.7345175 \\
\text{Area} = 490
\]

Find the cost, in dollars, of paving the area if the Rock Solid Concrete Company charges $8.95 per square foot.

\[
490 \times 8.95 = \$4385.50
\]

Score: 4 The student has a complete and correct response.
Question 37

The Rock Solid Concrete Company has been asked to pave a rectangular area surrounding a circular fountain with a diameter of 8 feet, as shown in the diagram.

Find the area, to the nearest square foot, that must be paved.

\[
A = \pi r^2
\]
\[
= \pi (4^2)
\]
\[
= 16\pi \text{ ft}^2
\]
\[
= 50.26548246
\]
\[
= 490 \text{ ft}^2
\]

Find the cost, in dollars, of paving the area if the Rock Solid Concrete Company charges $8.95 per square foot.

\[
490 \times 8.95 = \$4386
\]

Score: 3 The student rounded the cost to the nearest dollar.
Question 37

The Rock Solid Concrete Company has been asked to pave a rectangular area surrounding a circular fountain with a diameter of 8 feet, as shown in the diagram.

Find the area, to the nearest square foot, that must be paved.

\[(15)(36) = 540 \]

\[A = \pi r^2 \]
\[A = \pi 4^2 \]
\[A = 16 \pi \]
\[A = 50.26 \]

\[540 - 50.26 = 489.74 \text{ ft}^2 \]

Find the cost, in dollars, of paving the area if the Rock Solid Concrete Company charges $8.95 per square foot.

\[($8.95)(489.74) = 4383.173 = \$4383.17 \]

Score: 3 The student did not round to the nearest square foot.
37 The Rock Solid Concrete Company has been asked to pave a rectangular area surrounding a circular fountain with a diameter of 8 feet, as shown in the diagram.

Find the area, to the nearest square foot, that must be paved.

\[
\text{Area (A)} = 540 \text{ ft}^2
\]

\[
A_0 = \pi r^2 \\
A_0 = 16\pi \\
A_r = 50 \\
540 - 50 = 490
\]

Find the cost, in dollars, of paving the area if the Rock Solid Concrete Company charges $8.95 per square foot.

\[
\frac{490}{8.95} = \frac{54.75}{10}
\]

Score: 3 The student correctly found 490, but showed no further correct work.
The Rock Solid Concrete Company has been asked to pave a rectangular area surrounding a circular fountain with a diameter of 8 feet, as shown in the diagram.

Find the area, to the nearest square foot, that must be paved.

\[A = \pi \cdot 8^2 \]
\[A = 201 \]
\[A = 540 \]

Find the cost, in dollars, of paving the area if the Rock Solid Concrete Company charges $8.95 per square foot.

\[339 \cdot 8.95 = \$3034.05 \]

Score: 2 The student made a conceptual error by using 8, the diameter, for the radius.
Question 37

37 The Rock Solid Concrete Company has been asked to pave a rectangular area surrounding a circular fountain with a diameter of 8 feet, as shown in the diagram.

Find the area, to the nearest square foot, that must be paved.

\[
\begin{align*}
\text{Area of the rectangle} & = 36 \times 15 = 540 \\
\text{Area of the circle} & = \pi \times 4^2 = 50.3 \\
\text{Total area} & = 540 - 50.3 = 490.3
\end{align*}
\]

Find the cost, in dollars, of paving the area if the Rock Solid Concrete Company charges $8.95 per square foot.

\[
490.3 \times 8.95 = 4388.185
\]

\[\text{Cost} = \$4388.19\]

Score: 2 The student made a rounding error and a computational error.
The Rock Solid Concrete Company has been asked to pave a rectangular area surrounding a circular fountain with a diameter of 8 feet, as shown in the diagram.

Find the area, to the nearest square foot, that must be paved.

\[
A = \pi \cdot r^2 \\
A = \pi \cdot (4)^2 \\
A = \frac{16\pi}{2} \\
A = 515
\]

Find the cost, in dollars, of paving the area if the Rock Solid Concrete Company charges $8.95 per square foot.

\[
\frac{515}{8.95} \approx 58.43 \\
\$4609
\]

Score: 1 The student made a conceptual error by using the wrong formula for the area of a circle. The student rounded the cost to the nearest dollar.
The Rock Solid Concrete Company has been asked to pave a rectangular area surrounding a circular fountain with a diameter of 8 feet, as shown in the diagram.

Find the area, to the nearest square foot, that must be paved.

\[
\text{Area shaded} = A_{\text{rectangle}} - A_{\text{circle}}
\]
\[
= 36 \times 15 - \frac{\pi \cdot 4^2}{2}
\]
\[
= 540 - \frac{16\pi}{2}
\]
\[
= 540 - 8\pi
\]
\[
= 540 - 25.12
\]
\[
= 514.88
\]

Find the cost, in dollars, of paving the area if the Rock Solid Concrete Company charges $8.95 per square foot.

\[
36 \times 15 = 540
\]
\[
540 \times 8.95 = 4,833
\]

Answer: $4,833.00

Score: 0 The student used an incorrect formula to find the area of the circle, and did not round to the nearest square foot. The student used the area of the rectangle to find the cost.
Question 38

38 Solve the following system of equations algebraically:

\[\begin{align*}
y &= x^2 + 5x - 17 \\
y &= x - 5
\end{align*} \]

\[\begin{align*}
x - 5 &= x^2 + 5x - 17 \\
2x &= x^2 + 4x - 12 \\
x &= (x+6)(x-2) \\
x &= -6 \\
x &= 2 \\
y &= x - 5 \\
y &= -6 - 5 = -11 \\
&= (-6,-11) \\
y &= 2 - 5 = -3 \\
&= (2,-3) \text{ and } (-6,-11)
\]

Score: 4 The student showed a complete and correct response.
38 Solve the following system of equations algebraically:

\[y = x^2 + 5x - 17 \]
\[y = x - 5 \]

\[
\begin{align*}
x - 5 &= x^2 + 5x - 17 \\
-5 &= x^2 + 4x - 17 \\
+5 &= x^2 + 4x - 12 \\
0 &= x^2 + 4x - 12
\end{align*}
\]

\[
x = -b \pm \sqrt{b^2 - 4ac} \\
2a
\]

\[
x = \frac{-4 \pm \sqrt{16 + 48}}{2} \\
x = \frac{-4 \pm 8}{2} \\
x = -4 \pm 4
\]

\[
x = -12 \pm 8 \\
x = -20, 0
\]

\[
x = -12, 8 \\
y = x - 5
\]

\[
y = -17, -5 \\
y = -11
\]

\[
x = 1 \\
b = 4 \\
c = -12
\]

\[
x = \frac{1}{2}, 2 \\
x = -12
\]

\[
y = -5 \\
y = 7, -5 \\
y = -11
\]

Score: 4 The student has a complete and correct response.
38 Solve the following system of equations algebraically:

\[
\begin{align*}
y &= x^2 + 5x - 17 \\
y &= x - 5
\end{align*}
\]

\[
\begin{align*}
x^2 + 5x - 17 &= x - 5 \\
\Rightarrow x^2 + 4x &= 12 \\
\Rightarrow x^2 + 4x + 4 &= 12 + 4 \\
\Rightarrow (x + 2)^2 &= 16 \\
\Rightarrow x + 2 &= \pm 4 \\
\Rightarrow x &= -2 - 4, -2 + 4 \\
\Rightarrow x &= -6, 2 \\
\Rightarrow y &= -5, 7
\end{align*}
\]

\((2, -3) \text{ and } (-6, -11)\)

Score: 4 The student has a complete and correct response.
38 Solve the following system of equations algebraically:

\[
\begin{align*}
y &= x^2 + 5x - 17 \\
y &= x - 5
\end{align*}
\]

\[
x - 5 = x^2 + 5x - 17 \\
x + 5 = -x + 5
\]

\[
0 = x^2 + 4x - 12
\]

\[
0 = (x+6)(x-2)
\]

\[
x = -6 \quad x = 2
\]

Score: 3 The student showed correct work, but only found the correct values of \(x\).
38 Solve the following system of equations algebraically:

\[
\begin{align*}
 y &= x^2 + 5x - 17 \\
 y &= x - 5
\end{align*}
\]

\[
\begin{align*}
 x^2 + 5x - 17 &= x - 5 \\
 x^2 + 4x - 12 &= 0 \\
 (x+6)(x-2) &= 0 \\
 x &= -6 \\
 x &= 2
\end{align*}
\]

\[
\begin{align*}
 y &= x+5 \\
 y &= -6+5 = -1 \\
 y &= 2+5 = 7
\end{align*}
\]

So \(x = -6, y = -1 \) or \(x = 2, y = 7 \)

Score: 3 The student found correct values of \(x \), but used an incorrect equation to find the values of \(y \).
38 Solve the following system of equations algebraically:

\[
\begin{align*}
 y &= x^2 + 5x - 17 \\
 y &= x - 5
\end{align*}
\]

\[
x - 5 = x + 5x - 17 \\
-8x = -12 \\
\Rightarrow x = 3, -3
\]

\[
y = 3 - 5 = -2 \\
y = -3 - 5 = -8
\]

\[
(3, -2), (-3, -8)
\]

Score: 2 The student added -5 instead of +5 to both sides, and added -17 and -5 incorrectly.
Question 38

38 Solve the following system of equations algebraically:

\[
\begin{align*}
 y &= x^2 + 5x - 17 \\
 y &= x - 5
\end{align*}
\]

\[
\begin{array}{c|cc}
 x & y_1 & y_2 \\
 \hline
 -6 & -11 & -11 \\
 2 & -3 & -3
\end{array}
\]

I used my calculator.

Score: 2 The student used a method other than algebraic.
38 Solve the following system of equations algebraically:

\[
\begin{align*}
y &= x^2 + 5x - 17 \\
y &= x - 5
\end{align*}
\]

\((2, -3), (-6, -11)\)

Score: 1 The student wrote correct points, but showed no work.
Question 38

38 Solve the following system of equations algebraically:

\[
\begin{align*}
 y &= x^2 + 5x - 17 \\
 y &= x - 5
\end{align*}
\]

\[
\begin{align*}
 x - 5 &= x^2 + 5x - 17 + 5 \\
 x - 5 &= x^2 + 5x - 12 \\
 x^2 - x - 12 &= 0 \\
 (x + 3)(x - 4) &= 0 \\
 x &= -3, 4 \\
 x &= -4
\end{align*}
\]

Score: 1 The student wrote \(x^2 + 5x - 17 = x - 5 \), but showed no further correct work.
38 Solve the following system of equations algebraically:

\[
\begin{align*}
y &= x^2 + 5x - 17 \\
y &= x - 5
\end{align*}
\]

\[x = -6\]

Score: 0 The student showed only one correct value of \(x\), but showed no further correct work.
Perform the indicated operations and express the result in simplest form:

\[
\frac{10x^2y}{x^2 + xy} \cdot \frac{(x + y)^2}{2x} \div \frac{x^2 - y^2}{5y^3}
\]

\[
\frac{5 \cdot 1 \cdot y \cdot 1 \cdot 5 \cdot y^2}{1 \cdot 1 \cdot (x-y)} = \frac{25y^3}{(x-y)}
\]

Score: 4 The student has a complete and correct response.
39 Perform the indicated operations and express the result in simplest form:

\[
\frac{10x^2y}{x^2 + xy} \cdot \frac{(x + y)^2}{2x} \div \frac{x^2 - y^2}{5y^3}
\]

\[
\frac{10x^2y \cdot (x+y)^2 \cdot 5y^3}{x(x+y) \cdot 2x \cdot (x-y)(x+y)} = \frac{25y}{x-y}
\]

Score: 3 The student made a simplification error in the numerator.
39 Perform the indicated operations and express the result in simplest form:

\[
\frac{10x^2y}{x^2 + xy} \cdot \left(\frac{(x + y)^2}{2x} \right) \div \left(\frac{x^2 - y^2}{5y^3} \right)
\]

\[
\frac{1 \cdot y}{10 \cdot x^2 y} \cdot \frac{(x + y)^2}{2x} \div \frac{x^2 - y^2}{5y^3} = \frac{x^2 - y^2}{x \cdot y^2} = \frac{(x+y)(x-y)}{x \cdot y^2}
\]

Score: 2 The student made one conceptual error by not multiplying by the reciprocal.
39 Perform the indicated operations and express the result in simplest form:

\[
\frac{10x^2y}{x^2 + xy} \cdot \frac{(x + y)^2}{2x} \div \frac{x^2 - y^2}{5y^3}
\]

\[
\frac{10x^2y}{x(x+y)} \cdot \frac{(x+y)(x+y)}{2x} \div \frac{(x-y)(x+y)}{5y^2} = \frac{x-y}{y}
\]

Score: 1 The student made one conceptual error (didn’t multiply by the reciprocal) and one simplification error in the numerator.
39 Perform the indicated operations and express the result in simplest form:

\[
\left(\frac{10x^2y}{x^2 + xy} \right) \cdot \left(\frac{(x + y)^2}{2x} \right) \div \left(\frac{x^2 - y^2}{5y^2} \right)
\]

\[
\frac{5xy}{x} \cdot (x+y) \cdot \frac{x^2 - 1}{x-1} = y(x+y)(x^2 - 1)
\]

Score: 0 The student has a completely incorrect response.