The University of the State of New York
REGENTS HIGH SCHOOL EXAMINATION

ALGEBRA I (Common Core)

Monday, January 26, 2015 — 1:15 to 4:15 p.m., only

Student Name: __

School Name: __

Print your name and the name of your school on the lines above.

A separate answer sheet for Part I has been provided to you. Follow the
instructions from the proctor for completing the student information on your answer
sheet.

This examination has four parts, with a total of 37 questions. You must answer
all questions in this examination. Record your answers to the Part I multiple-choice
questions on the separate answer sheet. Write your answers to the questions in
Parts II, III, and IV directly in this booklet. All work should be written in pen, except
graphs and drawings, which should be done in pencil. Clearly indicate the necessary
steps, including appropriate formula substitutions, diagrams, graphs, charts, etc.
The formulas that you may need to answer some questions in this examination are
found at the end of the examination. This sheet is perforated so you may remove it
from this booklet.

Scrap paper is not permitted for any part of this examination, but you may use
the blank spaces in this booklet as scrap paper. A perforated sheet of scrap graph
paper is provided at the end of this booklet for any question for which graphing may
be helpful but is not required. You may remove this sheet from this booklet. Any
work done on this sheet of scrap graph paper will not be scored.

When you have completed the examination, you must sign the statement printed
at the end of the answer sheet, indicating that you had no unlawful knowledge of the
questions or answers prior to the examination and that you have neither given nor
received assistance in answering any of the questions during the examination. Your
answer sheet cannot be accepted if you fail to sign this declaration.

Notice...
A graphing calculator and a straightedge (ruler) must be available for you to use while taking this
examination.

DO NOT OPEN THIS EXAMINATION BOOKLET UNTIL THE SIGNAL IS GIVEN.
Part I

Answer all 24 questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. For each statement or question, choose the word or expression that, of those given, best completes the statement or answers the question. Record your answers on your separate answer sheet. [48]

1 The owner of a small computer repair business has one employee, who is paid an hourly rate of $22. The owner estimates his weekly profit using the function \(P(x) = 8600 - 22x \). In this function, \(x \) represents the number of

(1) computers repaired per week
(2) hours worked per week
(3) customers served per week
(4) days worked per week

2 Peyton is a sprinter who can run the 40-yard dash in 4.5 seconds. He converts his speed into miles per hour, as shown below.

\[
\frac{40 \text{ yd}}{4.5 \text{ sec}} \cdot \frac{3 \text{ ft}}{1 \text{ yd}} \cdot \frac{5280 \text{ ft}}{1 \text{ mi}} \cdot \frac{60 \text{ sec}}{1 \text{ min}} \cdot \frac{60 \text{ min}}{1 \text{ hr}}
\]

Which ratio is *incorrectly* written to convert his speed?

(1) \(\frac{3 \text{ ft}}{1 \text{ yd}} \)
(2) \(\frac{5280 \text{ ft}}{1 \text{ mi}} \)
(3) \(\frac{60 \text{ sec}}{1 \text{ min}} \)
(4) \(\frac{60 \text{ min}}{1 \text{ hr}} \)

3 Which equation has the same solutions as \(2x^2 + x - 3 = 0 \)?

(1) \((2x - 1)(x + 3) = 0 \)
(2) \((2x + 1)(x - 3) = 0 \)
(3) \((2x - 3)(x + 1) = 0 \)
(4) \((2x + 3)(x - 1) = 0 \)
4 Krystal was given $3000 when she turned 2 years old. Her parents invested it at a 2% interest rate compounded annually. No deposits or withdrawals were made. Which expression can be used to determine how much money Krystal had in the account when she turned 18?

(1) $3000(1 + 0.02)^{16}$
(2) $3000(1 - 0.02)^{16}$
(3) $3000(1 + 0.02)^{18}$
(4) $3000(1 - 0.02)^{18}$

5 Which table of values represents a linear relationship?

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
<th>x</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-3</td>
<td>-1</td>
<td>-3</td>
</tr>
<tr>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
<th>x</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>$\frac{1}{2}$</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>3</td>
<td>27</td>
</tr>
</tbody>
</table>

6 Which domain would be the most appropriate set to use for a function that predicts the number of household online-devices in terms of the number of people in the household?

(1) integers
(2) whole numbers
(3) irrational numbers
(4) rational numbers
7 The inequality \(7 - \frac{2}{3}x < x - 8\) is equivalent to

(1) \(x > 9\)
(2) \(x > -\frac{3}{5}\)
(3) \(x < 9\)
(4) \(x < -\frac{3}{5}\)

8 The value in dollars, \(v(x)\), of a certain car after \(x\) years is represented by the equation \(v(x) = 25,000(0.86)^x\). To the nearest dollar, how much more is the car worth after 2 years than after 3 years?

(1) 2589
(2) 6510
(3) 15,901
(4) 18,490

9 Which function has the same \(y\)-intercept as the graph below?

\[
(1) \ y = \frac{12 - 6x}{4} \\
(2) \ 27 + 3y = 6x \\
(3) \ 6y + x = 18 \\
(4) \ y + 3 = 6x
\]
10 Fred is given a rectangular piece of paper. If the length of Fred’s piece of paper is represented by $2x - 6$ and the width is represented by $3x - 5$, then the paper has a total area represented by

(1) $5x - 11$ (3) $10x - 22$
(2) $6x^2 - 28x + 30$ (4) $6x^2 - 6x - 11$

11 The graph of a linear equation contains the points $(3,11)$ and $(-2,1)$. Which point also lies on the graph?

(1) $(2,1)$ (3) $(2,6)$
(2) $(2,4)$ (4) $(2,9)$

12 How does the graph of $f(x) = 3(x - 2)^2 + 1$ compare to the graph of $g(x) = x^2$?

(1) The graph of $f(x)$ is wider than the graph of $g(x)$, and its vertex is moved to the left 2 units and up 1 unit.
(2) The graph of $f(x)$ is narrower than the graph of $g(x)$, and its vertex is moved to the right 2 units and up 1 unit.
(3) The graph of $f(x)$ is narrower than the graph of $g(x)$, and its vertex is moved to the left 2 units and up 1 unit.
(4) The graph of $f(x)$ is wider than the graph of $g(x)$, and its vertex is moved to the right 2 units and up 1 unit.

13 Connor wants to attend the town carnival. The price of admission to the carnival is $4.50, and each ride costs an additional 79 cents. If he can spend at most $16.00 at the carnival, which inequality can be used to solve for r, the number of rides Connor can go on, and what is the maximum number of rides he can go on?

(1) $0.79 + 4.50r \leq 16.00$; 3 rides
(2) $0.79 + 4.50r \leq 16.00$; 4 rides
(3) $4.50 + 0.79r \leq 16.00$; 14 rides
(4) $4.50 + 0.79r \leq 16.00$; 15 rides
Corinne is planning a beach vacation in July and is analyzing the daily high temperatures for her potential destination. She would like to choose a destination with a high median temperature and a small interquartile range. She constructed box plots shown in the diagram below.

Which destination has a median temperature above 80 degrees and the smallest interquartile range?

(1) Ocean Beach (3) Serene Shores
(2) Whispering Palms (4) Pelican Beach

Some banks charge a fee on savings accounts that are left inactive for an extended period of time. The equation \(y = 5000(0.98)^x \) represents the value, \(y \), of one account that was left inactive for a period of \(x \) years.

What is the \(y \)-intercept of this equation and what does it represent?

(1) 0.98, the percent of money in the account initially
(2) 0.98, the percent of money in the account after \(x \) years
(3) 5000, the amount of money in the account initially
(4) 5000, the amount of money in the account after \(x \) years
16 The equation for the volume of a cylinder is \(V = \pi r^2 h \). The positive value of \(r \), in terms of \(h \) and \(V \), is

\[
(1) \quad r = \sqrt{\frac{V}{\pi h}} \\
(2) \quad r = \sqrt{V \pi h} \\
(3) \quad r = 2V \pi h \\
(4) \quad r = \frac{V}{2\pi}
\]

17 Which equation has the same solutions as \(x^2 + 6x - 7 = 0 \)?

\[
(1) \quad (x + 3)^2 = 2 \\
(2) \quad (x - 3)^2 = 2 \\
(3) \quad (x - 3)^2 = 16 \\
(4) \quad (x + 3)^2 = 16
\]

18 Two functions, \(y = |x - 3| \) and \(3x + 3y = 27 \), are graphed on the same set of axes. Which statement is true about the solution to the system of equations?

\[
(1) \quad (3,0) \text{ is the solution to the system because it satisfies the equation } y = |x - 3|.
(2) \quad (9,0) \text{ is the solution to the system because it satisfies the equation } 3x + 3y = 27.
(3) \quad (6,3) \text{ is the solution to the system because it satisfies both equations.}
(4) \quad (3,0), (9,0), \text{ and } (6,3) \text{ are the solutions to the system of equations because they all satisfy at least one of the equations.}
\]
19 Miriam and Jessica are growing bacteria in a laboratory. Miriam uses the growth function \(f(t) = n^{2^t} \) while Jessica uses the function \(g(t) = n^{4^t} \), where \(n \) represents the initial number of bacteria and \(t \) is the time, in hours. If Miriam starts with 16 bacteria, how many bacteria should Jessica start with to achieve the same growth over time?

(1) 32 (3) 8
(2) 16 (4) 4

20 If a sequence is defined recursively by \(f(0) = 2 \) and \(f(n + 1) = -2f(n) + 3 \) for \(n \geq 0 \), then \(f(2) \) is equal to

(1) 1 (3) 5
(2) -11 (4) 17

21 An astronaut drops a rock off the edge of a cliff on the Moon. The distance, \(d(t) \), in meters, the rock travels after \(t \) seconds can be modeled by the function \(d(t) = 0.8t^2 \). What is the average speed, in meters per second, of the rock between 5 and 10 seconds after it was dropped?

(1) 12 (3) 60
(2) 20 (4) 80

22 When factored completely, the expression \(p^4 - 81 \) is equivalent to

(1) \((p^2 + 9)(p^2 - 9)\)
(2) \((p^2 - 9)(p^2 + 9)\)
(3) \((p^2 + 9)(p + 3)(p - 3)\)
(4) \((p + 3)(p - 3)(p + 3)(p - 3)\)

Use this space for computations.
23 In 2013, the United States Postal Service charged $0.46 to mail a letter weighing up to 1 oz. and $0.20 per ounce for each additional ounce. Which function would determine the cost, in dollars, $c(z)$, of mailing a letter weighing z ounces where z is an integer greater than 1?

(1) $c(z) = 0.46z + 0.20$
(2) $c(z) = 0.20z + 0.46$
(3) $c(z) = 0.46(z - 1) + 0.20$
(4) $c(z) = 0.20(z - 1) + 0.46$

24 A polynomial function contains the factors x, $x - 2$, and $x + 5$. Which graph(s) below could represent the graph of this function?

(1) I, only
(2) II, only
(3) I and III
(4) I, II, and III
Ms. Fox asked her class “Is the sum of 4.2 and $\sqrt{2}$ rational or irrational?” Patrick answered that the sum would be irrational.

State whether Patrick is correct or incorrect. Justify your reasoning.
26 The school newspaper surveyed the student body for an article about club membership. The table below shows the number of students in each grade level who belong to one or more clubs.

<table>
<thead>
<tr>
<th>Grade</th>
<th>1 Club</th>
<th>2 Clubs</th>
<th>3 or More Clubs</th>
</tr>
</thead>
<tbody>
<tr>
<td>9th</td>
<td>90</td>
<td>33</td>
<td>12</td>
</tr>
<tr>
<td>10th</td>
<td>125</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>11th</td>
<td>87</td>
<td>22</td>
<td>18</td>
</tr>
<tr>
<td>12th</td>
<td>75</td>
<td>27</td>
<td>23</td>
</tr>
</tbody>
</table>

If there are 180 students in ninth grade, what percentage of the ninth grade students belong to more than one club?
27 A function is shown in the table below.

<table>
<thead>
<tr>
<th>x</th>
<th>f(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4</td>
<td>2</td>
</tr>
<tr>
<td>-1</td>
<td>-4</td>
</tr>
<tr>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
</tr>
</tbody>
</table>

If included in the table, which ordered pair, (−4,1) or (1,−4), would result in a relation that is no longer a function? Explain your answer.
28 Subtract $5x^2 + 2x - 11$ from $3x^2 + 8x - 7$. Express the result as a trinomial.
29 Solve the equation $4x^2 - 12x = 7$ algebraically for x.
30 Graph the following function on the set of axes below.

\[f(x) = \begin{cases}
|x|, & -3 \leq x < 1 \\
4, & 1 \leq x \leq 8
\end{cases} \]
A gardener is planting two types of trees:

Type \(A \) is three feet tall and grows at a rate of 15 inches per year.

Type \(B \) is four feet tall and grows at a rate of 10 inches per year.

Algebraically determine exactly how many years it will take for these trees to be the same height.
32 Write an exponential equation for the graph shown below.

Explain how you determined the equation.
Part III

Answer all 4 questions in this part. Each correct answer will receive 4 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil.

33 Jacob and Zachary go to the movie theater and purchase refreshments for their friends. Jacob spends a total of $18.25 on two bags of popcorn and three drinks. Zachary spends a total of $27.50 for four bags of popcorn and two drinks.

Write a system of equations that can be used to find the price of one bag of popcorn and the price of one drink.

Using these equations, determine and state the price of a bag of popcorn and the price of a drink, to the nearest cent.
a) Write the inequality represented by the graph.

b) On the same set of axes, graph the inequality \(x + 2y < 4 \).

c) The two inequalities graphed on the set of axes form a system. Oscar thinks that the point \((2,1) \) is in the solution set for this system of inequalities. Determine and state whether you agree with Oscar. Explain your reasoning.
A nutritionist collected information about different brands of beef hot dogs. She made a table showing the number of Calories and the amount of sodium in each hot dog.

<table>
<thead>
<tr>
<th>Calories per Beef Hot Dog</th>
<th>Milligrams of Sodium per Beef Hot Dog</th>
</tr>
</thead>
<tbody>
<tr>
<td>186</td>
<td>495</td>
</tr>
<tr>
<td>181</td>
<td>477</td>
</tr>
<tr>
<td>176</td>
<td>425</td>
</tr>
<tr>
<td>149</td>
<td>322</td>
</tr>
<tr>
<td>184</td>
<td>482</td>
</tr>
<tr>
<td>190</td>
<td>587</td>
</tr>
<tr>
<td>158</td>
<td>370</td>
</tr>
<tr>
<td>139</td>
<td>322</td>
</tr>
</tbody>
</table>

a) Write the correlation coefficient for the line of best fit. Round your answer to the nearest hundredth.

b) Explain what the correlation coefficient suggests in the context of this problem.
a) Given the function \(f(x) = -x^2 + 8x + 9 \), state whether the vertex represents a maximum or minimum point for the function. Explain your answer.

b) Rewrite \(f(x) \) in vertex form by completing the square.
New Clarendon Park is undergoing renovations to its gardens. One garden that was originally a square is being adjusted so that one side is doubled in length, while the other side is decreased by three meters.

The new rectangular garden will have an area that is 25% more than the original square garden. Write an equation that could be used to determine the length of a side of the original square garden.

Explain how your equation models the situation.

Determine the area, in square meters, of the new rectangular garden.
Scrap Graph Paper — This sheet will *not* be scored.
High School Math Reference Sheet

<table>
<thead>
<tr>
<th>Unit Conversion</th>
<th>Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 inch</td>
<td>2.54 cm</td>
</tr>
<tr>
<td>1 meter</td>
<td>39.37 in</td>
</tr>
<tr>
<td>1 mile</td>
<td>5280 ft</td>
</tr>
<tr>
<td>1 mile</td>
<td>1760 yd</td>
</tr>
<tr>
<td>1 mile</td>
<td>1609 km</td>
</tr>
<tr>
<td>1 kilometer</td>
<td>0.62 mi</td>
</tr>
<tr>
<td>1 pound</td>
<td>16 oz</td>
</tr>
<tr>
<td>1 pound</td>
<td>0.454 kg</td>
</tr>
<tr>
<td>1 gallon</td>
<td>4 quarts</td>
</tr>
<tr>
<td>1 gallon</td>
<td>3.785 L</td>
</tr>
<tr>
<td>1 liter</td>
<td>0.264 gal</td>
</tr>
<tr>
<td>1 liter</td>
<td>1000 cm3</td>
</tr>
</tbody>
</table>

Geometric Formulas

<table>
<thead>
<tr>
<th>Shape</th>
<th>Area Formula</th>
<th>Volume Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangle</td>
<td>$A = \frac{1}{2}bh$</td>
<td></td>
</tr>
<tr>
<td>Parallelogram</td>
<td>$A = bh$</td>
<td></td>
</tr>
<tr>
<td>Circle</td>
<td>$A = \pi r^2$</td>
<td>$C = \pi d \text{ or } C = 2\pi r$</td>
</tr>
<tr>
<td>General Prisms</td>
<td>$V = Bh$</td>
<td>$V = Bh$</td>
</tr>
<tr>
<td>Cylinder</td>
<td>$V = \pi r^2h$</td>
<td></td>
</tr>
<tr>
<td>Sphere</td>
<td>$V = \frac{4}{3}\pi r^3$</td>
<td>$V = \frac{1}{3}\pi r^2h$</td>
</tr>
<tr>
<td>Cone</td>
<td>$V = \frac{1}{3}\pi r^2h$</td>
<td>$V = \frac{1}{3} Bh$</td>
</tr>
</tbody>
</table>

Algebra Formulas

<table>
<thead>
<tr>
<th>Formula Type</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pythagorean Theorem</td>
<td>$a^2 + b^2 = c^2$</td>
</tr>
<tr>
<td>Quadratic Formula</td>
<td>$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$</td>
</tr>
<tr>
<td>Arithmetic Sequence</td>
<td>$a_n = a_1 + (n - 1)d$</td>
</tr>
<tr>
<td>Geometric Sequence</td>
<td>$a_n = a_1r^n - 1$</td>
</tr>
<tr>
<td>Geometric Series</td>
<td>$S_n = \frac{a_1 - a_1r^n}{1 - r}$ where $r \neq 1$</td>
</tr>
<tr>
<td>Radians</td>
<td>1 radian = $\frac{180}{\pi}$ degrees</td>
</tr>
<tr>
<td>Degrees</td>
<td>1 degree = $\frac{\pi}{180}$ radians</td>
</tr>
<tr>
<td>Exponential Growth/Decay</td>
<td>$A = A_0e^{k(t - t_0)} + B_0$</td>
</tr>
</tbody>
</table>