The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION
 GEOMETRY (Common Core)

Friday, June 16, 2017 - 9:15 a.m. to 12:15 p.m.
MODEL RESPONSE SET

Table of Contents

Question 25 2
Question 26 8
Question 27 15
Question 28 22
Question 29 25
Question 30 32
Question 31 38
Question 32 44
Question 33 52
Question 34 . 59
Question 35 . 65
Question 36 81

Question 25

25 Given: Trapezoid JKLM with $\overline{J K} \| \overline{M L}$
Using a compass and straightedge, construct the altitude from vertex J to $\overline{M L}$. [Leave all construction marks.]

Score 2: The student gave a complete and correct response.

Question 25

25 Given: Trapezoid JKLM with $\overline{J K} \| \overline{M L}$
Using a compass and straightedge, construct the altitude from vertex J to $\overline{M L}$. [Leave all construction marks.]

Score 2: The student gave a complete and correct response.

Question 25

25 Given: Trapezoid JKLM with $\overline{J K} \| \overline{M L}$
Using a compass and straightedge, construct the altitude from vertex J to $\overline{M L}$. [Leave all construction marks.]

Score 2: The student gave a complete and correct response.

Question 25

25 Given: Trapezoid $J K L M$ with $\overline{J K} \| \overline{M L}$
Using a compass and straightedge, construct the altitude from vertex J to $\overline{M L}$. [Leave all construction marks.]

Score 1: The student did not extend side $\overline{M L}$ through vertex M to locate the intersection of the extension of $\overline{M L}$ and the arc drawn from vertex J.

Question 25

25 Given: Trapezoid $J K L M$ with $\overline{J K} \| \overline{M L}$
Using a compass and straightedge, construct the altitude from vertex J to $\overline{M L}$. [Leave all construction marks.]

Score 1: The student constructed an altitude correctly, but constructed the altitude from vertex K.

Question 25

25 Given: Trapezoid $J K L M$ with $\overline{J K} \| \overline{M L}$
Using a compass and straightedge, construct the altitude from vertex J to $\overline{M L}$. [Leave all construction marks.]

Score 0: The student had a completely incorrect response.

Question 26

26 Determine and state, in terms of π, the area of a sector that intercepts a 40° arc of a circle with a radius of 4.5 .

Score 2: The student gave a complete and correct response.

Question 26

26 Determine and state, in terms of π, the area of a sector that intercepts a 40° arc of a circle with a radius of 4.5.

$$
\begin{aligned}
& A=\pi r^{2} \\
& A=4.5^{2} \cdot \mathrm{~m} \\
& A=20,25 \mathrm{tr}
\end{aligned}
$$

$$
\begin{array}{r}
\frac{\text { Angle }}{\text { area } \frac{40^{\circ}}{x}}=\frac{3600}{20.25 \pi} \\
\frac{360 x}{360^{\circ}}=\frac{810 \pi}{360} \\
x=\frac{9 \pi}{4}
\end{array}
$$

Score 2: The student gave a complete and correct response.

Question 26

26 Determine and state, in terms of π, the area of a sector that intercepts a 40° arc of a circle with a radius of 4.5 .

Score 2: The student gave a complete and correct response.

Question 26

26 Determine and state, in terms of π, the area of a sector that intercepts a 40° arc of a circle with a radius of 4.5 .

$$
\begin{aligned}
& A=\frac{1}{2} \theta \cdot r^{2} \\
& A=\frac{1}{2}\left(\frac{\pi}{5}\right)(4.5)^{2} \\
& A=\frac{11}{2}\left(\frac{\pi}{45}\right)(20.25) \\
& A=\left(\frac{\pi}{2.25}\right)(20.25) \\
& A=\frac{20.25 \pi}{2.25} \\
& A=9 \pi
\end{aligned}
$$

Score 1: The student made one computational error when multiplying $\left(\frac{1}{2}\right)\left(\frac{\pi}{4.5}\right)$.

Question 26

26 Determine and state, in terms of π, the area of a sector that intercepts a 40° arc of a circle with a radius of 4.5.

 $\frac{40}{360}=\frac{.11}{1}$

$$
.11 \cdot 20.25
$$

2.2275π

Score 1: The student made one rounding error.

Question 26

26 Determine and state, in terms of π, the area of a sector that intercepts a 40° arc of a circle with a radius of 4.5 .

Score 0: The student had a correct answer with incorrect work.

Question 26

26 Determine and state, in terms of π, the area of a sector that intercepts a 40° arc of a circle with a radius of 4.5 .

Score 0: The student did not show enough correct work to receive any credit.

Question 27

27 The diagram below shows two figures. Figure A is a right triangular prism and figure B is an oblique triangular prism. The base of figure A has a height of 5 and a length of 8 and the height of prism A is 14 . The base of figure B has a height of 8 and a length of 5 and the height of prism B is 14 .

Figure A

Figure B

Use Cavalieri's Principle to explain why the volumes of these two triangular prisms are equal.

The volumes of these 2 triangular prisms ore

 equal because of Cavalieri's principle which states that if the base area is the same in the? figures, in this case 20 units 2, the height is the same in the 2 figures, in this case 14, and the cross sections remain the same area as The base area, the volumes are the same

280

280

Score 2: The student gave a complete and correct response.

Question 27

27 The diagram below shows two figures. Figure A is a right triangular prism and figure B is an oblique triangular prism. The base of figure A has a height of 5 and a length of 8 and the height of prism A is 14 . The base of figure B has a height of 8 and a length of 5 and the height of prism B is 14 .

Figure A

Figure B

Use Cavalieri's Principle to explain why the volumes of these two triangular prisms are equal.
V of Figure $A 14\left(\frac{5 \times 8}{2}\right)=280$
Sot figure $B 1^{2}\left(\frac{565}{2}\right)=280$
A and B have the same base area and height So, their Volumes are equal.

Score 2: The student gave a complete and correct response.

Question 27

27 The diagram below shows two figures. Figure A is a right triangular prism and figure B is an oblique triangular prism. The base of figure A has a height of 5 and a length of 8 and the height of prism A is 14 . The base of figure B has a height of 8 and a length of 5 and the height of prism B is 14 .

Figure A

Use Cavalieri's Principle to explain why the volumes of these two triangular prisms are equal.

Figure A : $B=\frac{1}{2}(5)(8)$

$$
=20
$$

Figure B : $B=\frac{1}{2}(8)(5)$

$$
=20
$$

The base areas of the two figures are the same so the volumes of the prisms are equal.

Score 1: The student wrote an incomplete explanation.

Question 27

27 The diagram below shows two figures. Figure A is a right triangular prism and figure B is an oblique triangular prism. The base of figure A has a height of 5 and a length of 8 and the height of prism A is 14 . The base of figure B has a height of 8 and a length of 5 and the height of prism B is 14 .

Figure A

Figure B

Use Cavalieri's Principle to explain why the volumes of these two triangular prisms are equal.

$$
\begin{array}{ll}
V=\frac{1}{2} \cdot 8 \cdot 5 \cdot 14 & V=\frac{1}{2} \cdot 5 \cdot 8 \cdot 14 \\
V=\frac{1}{2} \cdot 40 \cdot 14 & V=\frac{1}{2} \cdot 40 \cdot 14 \\
V=280 & V=280
\end{array}
$$

Score 1: The student showed algebraically that both prisms have equal volumes, but did not write an explanation using Cavalieri's Principle.

Question 27

27 The diagram below shows two figures. Figure A is a right triangular prism and figure B is an oblique triangular prism. The base of figure A has a height of 5 and a length of 8 and the height of prism A is 14 . The base of figure B has a height of 8 and a length of 5 and the height of prism B is 14 .

Figure A

Figure B

Use Cavalieri's Principle to explain why the volumes of these two triangular prisms are equal.

$$
\begin{array}{ll}
V \text { of } \Delta=1 / 2 \text { bn } & \text { of } \Delta=1 / 2 \mathrm{bh} \\
V=1 / 2(s) \cdot(8) & V \text { of } \Delta=1 / 2(8) / \mathrm{k}) \\
V=20 & V=20 \\
\text { The volume of the } \Delta \text { will be the } \\
\text { the same making the prisms equal } \\
\text { because the base and height can } \\
\text { be used interchangeably in the vounne } \\
\text { of a } \Delta \text { formula. It is shown in the work }
\end{array}
$$

Score 0: The student wrote an incorrect explanation.

Question 27

27 The diagram below shows two figures. Figure A is a right triangular prism and figure B is an oblique triangular prism. The base of figure A has a height of 5 and a length of 8 and the height of prism A is 14 . The base of figure B has a height of 8 and a length of 5 and the height of prism B is 14 .

Figure A

Figure B

Use Cavalieri's Principle to explain why the volumes of these two triangular prisms are equal.

$$
\begin{aligned}
& V=\frac{1}{2}(8 \times 5)(14) \\
& V=\frac{1}{2}(40)(14) \\
& V=1 / 2(40)(14) \\
& V=280
\end{aligned}
$$

slant height

$$
V=\frac{1}{3}(5 \times 8)(14)
$$

$$
v=\frac{1}{3}(40)(14)
$$

$$
V=\frac{1}{3}(40)(14)
$$

$$
v=187
$$

Score 0: The student did not show enough correct relevant work to receive any credit.

Question 28

28 When volleyballs are purchased, they are not fully inflated. A partially inflated volleyball can be modeled by a sphere whose volume is approximately $180 \mathrm{in}^{3}$. After being fully inflated, its volume is approximately $294 \mathrm{in}^{3}$. To the nearest tenth of an inch, how much does the radius increase when the volleyball is fully inflated?

$42.97183463=\sqrt[3]{r^{3}}$ $r=3.502632975$

$$
r=4.124958406
$$

the radius increased
0.6 of an inch

Score 2: The student gave a complete and correct response.

Question 28

28 When volleyballs are purchased, they are not fully inflated. A partially inflated volleyball can be modeled by a sphere whose volume is approximately $180 \mathrm{in}^{3}$. After being fully inflated, its volume is approximately $294 \mathrm{in}^{3}$. To the nearest tenth of an inch, how much does the radius increase when the volleyball is fully inflated?

$$
\begin{aligned}
& 3 \times 180=\frac{47 r^{3}}{3} \cdot 3 \\
& \frac{540}{4 \pi}=\frac{4 \pi r^{3}}{4 \pi} \\
& \sqrt[3]{424,115} \sqrt[3]{3} \\
& r \approx 7.5 \\
& \text { 3. } 294=\frac{4 \pi r^{3}}{3} \cdot 3 \\
& r \text { increased } 1.3 \text { in when the } \\
& \frac{682}{4 \pi}=\frac{4 \pi r^{3}}{4 \pi} \\
& \sqrt[3]{692.721} \sqrt[2]{r^{3}} \\
& r \approx 8.8 \\
& 8.8-7.5=1.3
\end{aligned}
$$

Score 1: The student made a computational error when dividing by 4π.

Question 28

28 When volleyballs are purchased, they are not fully inflated. A partially inflated volleyball can be modeled by a sphere whose volume is approximately $180 \mathrm{in}^{3}$. After being fully inflated, its volume is approximately $294 \mathrm{in}^{3}$. To the nearest tenth of an inch, how much does the radius increase when the volleyball is fully inflated?

$$
\begin{array}{cr}
\text { Partially Inflated } & \text { Fully Inflated } \\
r=\frac{4}{3} \pi r^{2} & r=\frac{4}{3} \pi r^{2} \\
\frac{3}{4}\left(180-\frac{4}{3} \pi r^{2}\right) & \frac{3}{4}\left(294=\frac{4}{3} \pi r^{2}\right) \\
135=\pi r^{2} & 220.5=\pi r^{2} \\
r^{2}=\frac{135}{\pi} & r^{2}=\frac{220.5}{\pi} \\
r_{1}=6.555290584 & r_{2}=8.377787888 \\
& r_{2}-r_{1}=1.822497304
\end{array}
$$

Score 1: The student calculated the square root in both equations rather than the cube root.

Question 28

28 When volleyballs are purchased, they are not fully inflated. A partially inflated volleyball can be modeled by a sphere whose volume is approximately $180 \mathrm{in}^{3}$. After being fully inflated, its volume is approximately $294 \mathrm{in}^{3}$. To the nearest tenth of an inch, how much does the radius increase when the volleyball is fully inflated?

Score 0: The student did not show enough correct work to receive any credit.

29 In right triangle $A B C$ shown below, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}$.
Explain why $\triangle A B C \sim \triangle A C D$.

SmCe $\triangle A B C 18$ a ngns thangn, \&ACB is a ngno angu plecrghe trianghs contam nant angnis. This aso means thas 4 cos is a ngite angn decanse asternac co leavcsa vorsex ana is perpenaicular to tm opposme sich ana perpenalculav wnes moersict to torm ngiso angus. An nght anopes are congment $80 \leftarrow A C B \tilde{z} \neq C D A$. $\& A$ is a retuxwe angh $50 \not F A Z ̇ K A$. SO $\triangle A B C \sim \triangle A L D D V A A$

Score 2: The student gave a complete and correct response.

Question 29

29 In right triangle $A B C$ shown below, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}$. Explain why $\triangle A B C \sim \triangle A C D$.

If an altitude is drawn to the hypotenuse of a right triangle, it divides the Δ into 2 right Δs each similar to each other and to the original right Δ.

Score 2: The student gave a complete and correct response.

Question 29

29 In right triangle $A B C$ shown below, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}$. Explain why $\triangle A B C \sim \triangle A C D$.

Both triangles share angle A and there are 2 right angers at D (aetrituck) and a right
angle ot C. So the triangles are similar by $A A$.

Score 2: The student gave a complete and correct response.

Question 29

29 In right triangle $A B C$ shown below, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}$. Explain why $\triangle A B C \sim \triangle A C D$.

$\triangle A B C \sim \triangle A C D$ because they both share the side $\overline{C A}$, so its congruent. In triangle $A B C$, angle C is a right angle, in $\triangle A C D, \angle D$ is a right angle because $\overline{C D}$ is an altitude to $\overline{A B}$ so $\angle D$ is congruent to $\angle C$.

Score 1: The student explained correctly why one pair of angles is congruent.

Question 29

29 In right triangle $A B C$ shown below, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}$. Explain why $\triangle A B C \sim \triangle A C D$.

The triangles are similar, because they have a pairs of $\cong \alpha^{\text {b/ }}$.

Score 1: The student wrote an incomplete explanation.

Question 29

29 In right triangle $A B C$ shown below, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}$. Explain why $\triangle A B C \sim \triangle A C D$.

$\triangle A B C$ is ~ to $\triangle A C D$ because all of their corresponding angles have the same measurement.

Score 1: The student used a specific example to make a general conclusion of triangle similarity.

Question 29

29 In right triangle $A B C$ shown below, altitude $\overline{C D}$ is drawn to hypotenuse $\overline{A B}$. Explain why $\triangle A B C \sim \triangle A C D$.

The altitude creates a perpendicular line. This makes right angles. Right angles means right triangles. Right triangles are similar.

Score 0: The student wrote an incorrect explanation.

Question 30

30 Triangle $A B C$ and triangle $D E F$ are drawn below.

If $\overline{A B} \cong \overline{D E}, \overline{A C} \cong \overline{D F}$, and $\angle A \cong \angle D$, write a sequence of transformations that maps triangle $A B C$ onto triangle $D E F$.

A translation along Vector $\overrightarrow{C F}$ so C maps onto F, followed by a Rotation about F that maps $\triangle A$ to $\triangle D, \overline{A B}$ to $\overline{D E}$, and $\overline{A C}$ to $\overline{D F}$.

Score 2: The student gave a complete and correct response.

Question 30

30 Triangle $A B C$ and triangle $D E F$ are drawn below.

If $\overline{A B} \cong \overline{D E}, \overline{A C} \cong \overline{D F}$, and $\angle A \cong \angle D$, write a sequence of transformations that maps triangle $A B C$ onto triangle $D E F$.

Rotate $\triangle A B C$ clockwise about point C until
$\overline{D F} \| \overrightarrow{A C}$, then translate $\triangle A B C$ along $\overrightarrow{C F}$ so
that $C \rightarrow F, B \rightarrow \varepsilon$, and $A \rightarrow D$

Score 2: The student gave a complete and correct response.

Question 30

30 Triangle $A B C$ and triangle $D E F$ are drawn below.

If $\overline{A B} \cong \overline{D E}, \overline{A C} \cong \overline{D F}$, and $\angle A \cong \angle D$, write a sequence of transformations that maps triangle $A B C$ onto triangle $D E F$.

> Ration About point p until $\angle A$ maps ondis $4 D$

Score 2: The student wrote a correct transformation based upon a correct construction to find the point of rotation, which is the point of intersection of the perpendicular bisectors of the segments whose endpoints are the corresponding vertices of the triangles.

Question 30

30 Triangle $A B C$ and triangle $D E F$ are drawn below.

If $\overline{A B} \cong \overline{D E}, \overline{A C} \cong \overline{D F}$, and $\angle A \cong \angle D$, write a sequence of transformations that maps triangle $A B C$ onto triangle $D E F$.

First you would translate triangle $A B C$ to the right. next you would then transluf. triangle $A B C$ upllast yea would rotate triangle $A B C$ clockwise until $\Varangle A$ matched up with 80.

Score 1: The student wrote an incomplete sequence of transformations.

Question 30

30 Triangle $A B C$ and triangle $D E F$ are drawn below.

If $\overline{A B} \cong \overline{D E}, \overline{A C} \cong \overline{D F}$, and $\angle A \cong \angle D$, write a sequence of transformations that maps triangle $A B C$ onto triangle $D E F$.

Translate and Rotate

Score 1: The student demonstrated knowledge of the transformation, but the written sequence was incomplete.

Question 30

30 Triangle $A B C$ and triangle $D E F$ are drawn below.

If $\overline{A B} \cong \overline{D E}, \overline{A C} \cong \overline{D F}$, and $\angle A \cong \angle D$, write a sequence of transformations that maps triangle $A B C$ onto triangle $D E F$.

$$
\begin{aligned}
& \text { rotated - by } \\
& \text { reflected - over line e } \\
& \text { translated- by } 3
\end{aligned}
$$

Score 0: The student wrote an incorrect sequence of transformations.

Question 31

31 Line n is represented by the equation $3 x+4 y=20$. Determine and state the equation of line p, the image of line n, after a dilation of scale factor $\frac{1}{3}$ centered at the point $(4,2)$.
[The use of the set of axes below is optional.]
Explain your answer.

$$
\begin{gathered}
3 x+4 y=-20 \\
-3 x \\
\frac{4 y}{4}=-3 x+20 \\
y=-\frac{3}{4} x+5
\end{gathered}
$$

Score 2: The student gave a complete and correct response.

Question 31

31 Line n is represented by the equation $3 x+4 y=20$. Determine and state the equation of line p, the image of line n, after a dilation of scale factor $\frac{1}{3}$ centered at the point $(4,2)$.
[The use of the set of axes below is optional.]
Explain your answer.

$$
\begin{gathered}
\left(\begin{array}{l}
4 y=-3 x+20) \frac{1}{4} \\
y=-\frac{3}{4} x+5
\end{array},=\frac{1}{2}\right.
\end{gathered}
$$

$$
\text { line } p=\left\lvert\, y=-\frac{3}{4} x+5\right.
$$

The pons the di cion ins centered 15 on the infersoithillocectron 1 of cord not change e either because

Score 2: The student gave a complete and correct response.

Question 31

31 Line n is represented by the equation $3 x+4 y=20$. Determine and state the equation of line p, the image of line n, after a dilation of scale factor $\frac{1}{3}$ centered at the point $(4,2)$.
[The use of the set of axes below is optional.]
Explain your answer.

$$
\begin{gathered}
3(4)+4(2)=20 \\
20=20
\end{gathered}
$$

The line is on the center of dilation fo the y line doesn't change.

Score 1: The student wrote a correct explanation, but did not write the equation of line p.

Question 31

31 Line n is represented by the equation $3 x+4 y=20$. Determine and state the equation of line p, the image of line n, after a dilation of scale factor $\frac{1}{3}$ centered at the point $(4,2)$.
[The use of the set of axes below is optional.]
Explain your answer.

$$
\begin{aligned}
& 3 x+4 y=20 \\
& -3 x \quad-3 x \\
& \hline \frac{4 y}{4}=\frac{20}{4}-\frac{3 x}{4}
\end{aligned}
$$

$$
5 \times \frac{1}{3}=\frac{5}{3}
$$

$$
y=\frac{5}{3}-\frac{3}{4} x
$$

$$
\text { The } y \text { intercept is dilated }
$$

but the slope stays the
same

Score 1: The student did not account for the center of dilation being on line n.

Question 31

31 Line n is represented by the equation $3 x+4 y=20$. Determine and state the equation of line p, the image of line n, after a dilation of scale factor $\frac{1}{3}$ centered at the point $(4,2)$.
[The use of the set of axes below is optional.]
Explain your answer.

$$
\begin{aligned}
& -\sum_{3}^{2}=9(x)+\frac{5}{3} \\
& \frac{3}{3}=\frac{4 \times x}{4} \\
& \frac{1 / 12=x}{4}
\end{aligned}
$$

Score 0: The student wrote an incorrect equation and did not write an explanation.

Question 31

31 Line n is represented by the equation $3 x+4 y=20$. Determine and state the equation of line p, the image of line n, after a dilation of scale factor $\frac{1}{3}$ centered at the point $(4,2)$.
[The use of the set of axes below is optional.]
Explain your answer.

$$
\begin{aligned}
& 3 x+4 y=\frac{20}{-3 x} \\
& \frac{3 x}{4 y}=\frac{30}{4}-\frac{3 x}{4} \\
& y=5-3 / 4 x
\end{aligned}
$$

Score 0: The student rewrote the given equation to graph the line, but did not write an explanation.

Question 32

32 Triangle $A B C$ has vertices at $A(-5,2), B(-4,7)$, and $C(-2,7)$, and triangle $D E F$ has vertices at $D(3,2), E(2,7)$, and $F(0,7)$. Graph and label $\triangle A B C$ and $\triangle D E F$ on the set of axes below.

Determine and state the single transformation where $\triangle D E F$ is the image of $\triangle A B C$.

Use your transformation to explain why $\triangle A B C \cong \triangle D E F$.
Reflect $\triangle A B C$ over the line $x=-1$
Reflections are rigid motions that preserve angle measures and side lengths, \& $\triangle A B C \cong \triangle D E F$.

Score 4: The student gave a complete and correct response.

Question 32

32 Triangle $A B C$ has vertices at $A(-5,2), B(-4,7)$, and $C(-2,7)$, and triangle $D E F$ has vertices at $D(3,2), E(2,7)$, and $F(0,7)$. Graph and label $\triangle A B C$ and $\triangle D E F$ on the set of axes below.

Determine and state the single transformation where $\triangle D E F$ is the image of $\triangle A B C$.

Use your transformation to explain why $\triangle A B C \cong \triangle D E F$.

- reflection over $x=-2$
- $\triangle A B C \cong \triangle D E F$ because reflections don't change side or angle measures

Score 3: The student miscounted when writing the equation of the line of reflection.

Question 32

32 Triangle $A B C$ has vertices at $A(-5,2), B(-4,7)$, and $C(-2,7)$, and triangle $D E F$ has vertices at $D(3,2), E(2,7)$, and $F(0,7)$. Graph and label $\triangle A B C$ and $\triangle D E F$ on the set of axes below.

Determine and state the single transformation where $\triangle D E F$ is the image of $\triangle A B C$.
$\triangle D E F$ was reflected over line $x=-1$. I know because all the points are equidistant from that line that are the images.
Use your transformation to explain why $\triangle A B C \cong \triangle D E F$.
$\triangle A B C \cong \triangle D E F$ by SSS because all the sides are the same length because of pithagoreen theorem.

Score 3: The student gave an explanation for why the triangles are congruent, but did not use the transformation to explain why.

Question 32

32 Triangle $A B C$ has vertices at $A(-5,2), B(-4,7)$, and $C(-2,7)$, and triangle $D E F$ has vertices at $D(3,2), E(2,7)$, and $F(0,7)$. Graph and label $\triangle A B C$ and $\triangle D E F$ on the set of axes below.

Determine and state the single transformation where $\triangle D E F$ is the image of $\triangle A B C$.

Use your transformation to explain why $\triangle A B C \cong \triangle D E F$.
Reflection across $x=-1$
When reflected onto each other, the side lengths are the same as well as angle measures, therefore they are congruent through SSS similarity.

Score 3: The student wrote a partially correct explanation.

Question 32

32 Triangle $A B C$ has vertices at $A(-5,2), B(-4,7)$, and $C(-2,7)$, and triangle $D E F$ has vertices at $D(3,2), E(2,7)$, and $F(0,7)$. Graph and label $\triangle A B C$ and $\triangle D E F$ on the set of axes below.

Determine and state the single transformation where $\triangle D E F$ is the image of $\triangle A B C$.

Use your transformation to explain why $\triangle A B C \cong \triangle D E F$.

$$
\begin{aligned}
& \text { Reflection over } x=-1 \text { the distance for each } \\
& \text { corresponding point is the same distaniuva. from } x=1
\end{aligned}
$$

Score 2: The student graphed and labeled the triangles correctly and stated the correct line of reflection, but no further correct work was shown.

Question 32

32 Triangle $A B C$ has vertices at $A(-5,2), B(-4,7)$, and $C(-2,7)$, and triangle $D E F$ has vertices at $D(3,2), E(2,7)$, and $F(0,7)$. Graph and label $\triangle A B C$ and $\triangle D E F$ on the set of axes below.

Determine and state the single transformation where $\triangle D E F$ is the image of $\triangle A B C$.

Use your transformation to explain why $\triangle A B C \cong \triangle D E F$.
Reflect $\triangle A B C$ over line l onto $\triangle D E F$.
They are congruent because they are the same size.

Score 2: The triangles were graphed and labeled correctly and a correct transformation was written, but no further correct work was shown.

Question 32

32 Triangle $A B C$ has vertices at $A(-5,2), B(-4,7)$, and $C(-2,7)$, and triangle $D E F$ has vertices at $D(3,2), E(2,7)$, and $F(0,7)$. Graph and label $\triangle A B C$ and $\triangle D E F$ on the set of axes below.

Determine and state the single transformation where $\triangle D E F$ is the image of $\triangle A B C$.

Use your transformation to explain why $\triangle A B C \cong \triangle D E F$.
Transformation: Rotation 270°

Score 1: The student graphed and labeled both triangles correctly, but no further correct work was shown.

Question 32

32 Triangle $A B C$ has vertices at $A(-5,2), B(-4,7)$, and $C(-2,7)$, and triangle $D E F$ has vertices at $D(3,2), E(2,7)$, and $F(0,7)$. Graph and label $\triangle A B C$ and $\triangle D E F$ on the set of axes below.

Determine and state the single transformation where $\triangle D E F$ is the image of $\triangle A B C$.

Use your transformation to explain why $\triangle A B C \cong \triangle D E F$.

$$
\text { Reflection offer the } y \text {-axis }
$$

Score 0: The student had a completely incorrect response.

Question 33

33 Given: $\overline{R S}$ and $\overline{T V}$ bisect each other at point X $\overline{T R}$ and $\overline{S V}$ are drawn

Prove: $\overline{T R} \| \overline{S V}$

each other at punt x
each other at print X
Thank SV are drown $/$ 2. Segment bisectors meat at a midpoint
and create $2 \cong$ segments.
2. $\overline{T X} \cong V \bar{V}$ $\bar{R}=\overline{s x}$
3. $\angle T \times R \cong \angle V \times S$
4. $\triangle T \times R \cong \triangle V \times S$
5. $\angle T \cong \angle V$
6. $\frac{\text { TR } 11 \mathrm{VS}}{}$
and create $\alpha \cong$ segments.
3. Vertical angles are congruent
4. SAS
5. CPCTC
6. If two lines are cut by a transversal so that alternate intererior angles art congruent, the tines apo parallel.

Score 4: The student gave a complete and correct response.

Question 33

33 Given: $\overline{R S}$ and $\overline{T V}$ bisect each other at point X $\overline{T R}$ and $\overline{S V}$ are drawn

Prove: $\overline{T R} \| \overline{S V}$

2. $\overline{T x} \cong \overline{V x}$;

3. \Varangle TXR and

4 Sky ore
4. 4 TR SS KV $^{\text {S }}$
5. $\triangle T R X \cong \triangle V S X$
$6,4 T T \cong \nsubseteq V$

$$
7^{\frac{A S}{T R} \cong \frac{ \pm R}{T R}}
$$

2. A segment bliscor $\stackrel{\text { divides a segment into two }}{=}$ parts. 3. Whines interject to create vertacal orle. 4 vertical argues one \equiv 5. S.A.S ミS.A.S 6.CPCTC
3. Congruent alternate interns angles crease poneullel ines.

Score 4: The student gave a complete and correct response.

33 Given: $\overline{R S}$ and $\overline{T V}$ bisect each other at point X $\overline{T R}$ and $\overline{S V}$ are drawn

Prove: $\overline{T R} \| \overline{S V}$

bisect eacnorreet
at pant y
2) $\bar{T} x=\overline{x v}$,
2) a bisector divides a segment into $2 \approx$ parts
3) intersecting liner form vertical is $\measuredangle 5 \times v$ are vertical <5
4) $\angle \tau \times R \cong \angle S \times v$
4) vertical <5 are $=$
5) $\Delta T \times R \cong \triangle V X S$
5) $\mathrm{sas} \cong \operatorname{scs}$
6) $x 2 \pi \approx \Varangle \operatorname{sux}$
a) CPAC
7) $\Delta R+x$ and x sitemuite in
b) $\overline{T R} \| \frac{s}{5 V}$
7) 4 's on opposite sicieof tinntural they are altemute
I) thees firm altemute inkenoras

Score 3: The student had an incorrect reason to prove statement 8.

Question 33

33 Given: $\overline{R S}$ and $\overline{T V}$ bisect each other at point X $\overline{T R}$ and $\overline{S V}$ are drawn

Prove: $\overline{T R} \| \overline{S V}$

Statements
(1) 1 SS RTV brecht eachother
(2) $\frac{\text { at }}{\overrightarrow{x x}} \cong \overline{x v}, \overline{x x} \cong \overline{x s}$
(3) $\angle 1 \cong \angle 2$
(4) $\triangle T K R \cong \triangle V X S$
(5) $\overline{T R} \| \overline{\delta Q}$

Reasons
(1) Given
(2) Definition of bisector
(4.) SAS \cong gAS
(5) CPOCTAC

Score 2: The triangles were proven congruent, but no further correct work was shown.

Question 33

33 Given: $\overline{R S}$ and $\overline{T V}$ bisect each other at point X $\overline{T R}$ and $\overline{S V}$ are drawn

Prove: $\overline{T R} \| \overline{S V}$

Score 2: The triangles were proven congruent, but no further correct work was shown.

Question 33

33 Given: $\overline{R S}$ and $\overline{T V}$ bisect each other at point X $\overline{T R}$ and $\overline{S V}$ are drawn

Prove: $\overline{T R} \| \overline{S V}$
(1) $\overline{B S}$ and $\overline{T V}$ bisect each (1) Given
other at point $x \overline{T h}$ and $\overline{S V}$ Giver are drawn
(2) $\overline{x x}$'s the midpoint of (2) def. of seq bisector $\overparen{R+S}$ and $\overline{F X V}$
(3) $\overline{T x} \tilde{\sim} \bar{V}$ and $\overline{R X}=\overline{x s}$ (3) def. of midpoint
(4) $<T \cong \angle V$
(F) $\overline{T R} \| \overline{S V}$
(4) \cong side have \cong opp. angles
(5) a ternate interior angles

Score 1: The student correctly proved $\overline{T X} \cong \overline{X V}$ and $\overline{R X} \cong \overline{X S}$, but no further correct work was shown.

Question 33

33 Given: $\overline{R S}$ and $\overline{T V}$ bisect each other at point X $\overline{T R}$ and $\overline{S V}$ are drawn

Prove: $\overline{T R} \| \overline{S V}$

OMSS and TV buseet exantother at panitx
$\overline{T R}$ and $\overline{s v}$ are drawn
(2) ≤ 1 and <2 are vertical \angle s
(3) $\angle 3 \cong \angle 4$
(4) $\overline{T R} \| \overline{S V}$

Ogven
(2) Anlvertcalys ave \cong (3)
(7) $A A$?

Score 0: The student had a completely incorrect response.

Question 34

34 A gas station has a cylindrical fueling tank that holds the gasoline for its pumps, as modeled below. The tank holds a maximum of 20,000 gallons of gasoline and has a length of 34.5 feet.

A metal pole is used to measure how much gas is in the tank. To the nearest tenth of a foot, how long does the pole need to be in order to reach the bottom of the tank and still extend one foot outside the tank? Justify your answer. [$1 \mathrm{ft}^{3}=7.48$ gallons]

$$
\begin{aligned}
& V=\pi r^{2} h \\
& \frac{20,000}{7.48}=2673.796 \\
& r=\sqrt{\frac{\pi}{\pi n}} \\
& r=\sqrt{\frac{2673.996}{3345}} \\
& r=4.9608,2=d \\
& d=9.9 \mathrm{ft} . \\
& \text { The pole must be } 10.94 \\
& \text { to reach the bottom } \\
& \text { w/ one foot of metal } \\
& \text { still outside the tank }
\end{aligned}
$$

Score 4: The student gave a complete and correct response.

Question 34

34 A gas station has a cylindrical fueling tank that holds the gasoline for its pumps, as modeled below. The tank holds a maximum of 20,000 gallons of gasoline and has a length of 34.5 feet.

A metal pole is used to measure how much gas is in the tank. To the nearest tenth of a foot, how long does the pole need to be in order to reach the bottom of the tank and still extend one foot outside the tank? Justify your answer. [$1 \mathrm{ft}^{3}=7.48$ gallons $]$

$$
\begin{aligned}
V & =20000 \mathrm{gal} \\
& =\frac{20000}{7.48} \approx 2673.8 \mathrm{ft}^{3} \\
V & =\pi r^{2} h \\
2673.8 & =\pi r^{2}(34.5) \\
r^{2} & =\frac{2673.8}{34.5} \\
r^{2} & =77.5 \\
r & =8.8035
\end{aligned}
$$

Score 3: The student did not divide by π when finding the radius.

Question 34

34 A gas station has a cylindrical fueling tank that holds the gasoline for its pumps, as modeled below. The tank holds a maximum of 20,000 gallons of gasoline and has a length of 34.5 feet.

A metal pole is used to measure how much gas is in the tank. To the nearest tenth of a foot, how long does the pole need to be in order to reach the bottom of the tank and still extend one foot outside the tank? Justify your answer. [$1 \mathrm{ft}^{3}=7.48$ gallons]

Score 3: The student found the length of the radius, but no further correct work was shown.

Question 34

34 A gas station has a cylindrical fueling tank that holds the gasoline for its pumps, as modeled below. The tank holds a maximum of 20,000 gallons of gasoline and has a length of 34.5 feet.

A metal pole is used to measure how much gas is in the tank. To the nearest tenth of a foot, how long does the pole need to be in order to reach the bottom of the tank and still extend one foot outside the tank? Justify your answer. [$1 \mathrm{ft}^{3}=7.48$ gallons]

$$
\begin{aligned}
& V=\pi r^{2} h \\
& 20,000=\pi r^{2}(34.5) \\
& \frac{20,000}{108.38}=\frac{108.38 r^{2}}{108.38} \\
& \sqrt{184.54}=\sqrt{r^{2}} \\
& 13.58=r \\
& 13.58 \times 2+1=28.2 \mathrm{Ft}
\end{aligned}
$$

Score 2: The student did not convert gallons to cubic feet.

Question 34

34 A gas station has a cylindrical fueling tank that holds the gasoline for its pumps, as modeled below. The tank holds a maximum of 20,000 gallons of gasoline and has a length of 34.5 feet.

A metal pole is used to measure how much gas is in the tank. To the nearest tenth of a foot, how long does the pole need to be in order to reach the bottom of the tank and still extend one foot outside the tank? Justify your answer. [$1 \mathrm{ft}^{3}=7.48$ gallons]

$$
\begin{aligned}
& \text { H will be } 2674 \\
& \text { because cohen dividing } \\
& \text { the amount of } \\
& \text { gallons in the tank } \\
& (20,000 \text { by } 7.48 \\
& \text { you get } 2,673.8 \text {. } \\
& \text { then adding another } \\
& \text { Foot outside the } \\
& \text { tank making it } \\
& 2,674 \text {. }
\end{aligned}
$$

$$
20,000
$$

Score 1: The student found the volume in cubic feet, but no further correct work was shown.

Question 34

34 A gas station has a cylindrical fueling tank that holds the gasoline for its pumps, as modeled below. The tank holds a maximum of 20,000 gallons of gasoline and has a length of 34.5 feet.

A metal pole is used to measure how much gas is in the tank. To the nearest tenth of a foot, how long does the pole need to be in order to reach the bottom of the tank and still extend one foot outside the tank? Justify your answer. [$1 \mathrm{ft}^{3}=7.48$ gallons $]$

Score 0: The student had a completely incorrect response.

Question 35

35 Quadrilateral $P Q R S$ has vertices $P(-2,3), Q(3,8), R(4,1)$, and $S(-1,-4)$.
Prove that $P Q R S$ is a rhombus.
[The use of the set of axes on the next page is optional.]
Pave awderes chores:
Distance Tósmáa,

$$
\begin{aligned}
& \text { PA: } \sqrt{(2-3)^{2}+(3+2)^{2}=\sqrt{16 D}}=5 \sqrt{2} \\
& \text { QR: } \sqrt{(1-8)^{2}+(4-3)^{2}}=\sqrt{50}=5 \sqrt{2} \\
& \text { RS: } \sqrt{(-4-1)^{2}+(-1+4)^{2}}=\sqrt{55}=5 \sqrt{2} \\
& \text { PS: } \sqrt{(-4+3)^{2}+(-1+2)^{2}}: \sqrt{56}=5 \sqrt{2} \\
& \overline{P G}=\overline{Q R}=\overline{R S} \equiv \overline{P S}
\end{aligned}
$$

\therefore Its \rightarrow champs because all
sides are equal

Question 35 is continued on the next page.

Question 35 continued

Prove that $P Q R S$ is not a square.
[The use of the set of axes below is optional.]

$$
\begin{aligned}
& \text { Dove Good PQRS is nat a flare: } \\
& \text { Slope: } \\
& \overline{P Q:} \cdot \frac{8-3}{3+{ }^{+2}}=\frac{5}{5}=1 \quad 1 \cdot \frac{-7}{1} \neq-1 \\
& \overline{Q R \cdot} \cdot \frac{1-8}{4-3}=\frac{-7}{1} \\
& \overline{P Q} \frac{1}{Q R}, \angle Q \text { is not a right angle. } \\
& \therefore P Q R s \text { is not a square because } \\
& \text { it doesit have right angles. }
\end{aligned}
$$

Score 6: The student gave a complete and correct response.

Question 35

35 Quadrilateral $P Q R S$ has vertices $P(-2,3), Q(3,8), R(4,1)$, and $S(-1,-4)$.
Prove that $P Q R S$ is a rhombus.
[The use of the set of axes on the next page is optional.]

$$
\begin{aligned}
& P Q=\sqrt{(3-(-2))^{2}+(8-3)^{2}}\left|Q R=\sqrt{(4-3)^{2}+(1-8)^{2}}\right| R S=\sqrt{(-1-4)^{2}+(-4-1)^{2}} \\
& =\sqrt{5^{2}+5^{2}}=\sqrt{1^{2}+(-7)^{2}}=\sqrt{(-5)^{2}+(-5)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{1^{2}+(-7)^{2}} \\
& =\sqrt{1+49} \\
& \overline{P Q} \cong \overline{Q R} \cong \overline{R S} \cong \overline{P S} \\
& =\sqrt{50}
\end{aligned}
$$

Since all 4 sides of quadrilateral PGRS are $\xlongequal{2}$, PQRS is a rhombus.

Question 35 is continued on the next page.

Question 35 continued

Prove that $P Q R S$ is not a square.
[The use of the set of axes below is optional.]

$$
\begin{aligned}
P R & =\sqrt{(4-(-2))^{2}+(1-3)^{2}} \left\lvert\, \begin{aligned}
Q S & =\sqrt{(-1-3)^{2}+(-4-8)^{2}} \\
& =\sqrt{(6)^{2}+(-2)^{2}} \\
& =\sqrt{36+4} \\
& =\sqrt{(-4)^{2}+(-12)^{2}} \\
& =\sqrt{16+144} \\
P R & =\sqrt{40}
\end{aligned} \quad Q S=\sqrt{160}\right.
\end{aligned}
$$

Since diagonals $\overline{P R}$ and $\overline{Q S}$ are not congruent, rhombus PQRS is not a square.

Score 6: The student gave a complete and correct response.

Question 35

35 Quadrilateral $P Q R S$ has vertices $P(-2,3), Q(3,8), R(4,1)$, and $S(-1,-4)$.
Prove that $P Q R S$ is a rhombus.
[The use of the set of axes on the next page is optional.]

$\alpha=\sqrt{(3-4)^{2}+(8-1)^{2}}$

SR $d=\sqrt{(-1-4)^{2}+(-4-1)^{2}}$
 $\sqrt{50} \sqrt{25} \sqrt{2}$

PS $d=\sqrt{(-2 t+(1)+5(t+4)}$ $\sqrt{(-1)^{2}+(T)^{2}}$
$\sqrt{1+49}$ $\sqrt{50}$ $\sqrt{25} \sqrt{2}$ $5 \sqrt{2}$

Question 35 is continued on the next page.

Question 35 continued

Prove that $P Q R S$ is not a square.
[The use of the set of axes below is optional.]
PQRS is not a square because the slopes are not negative recipials.

$$
\begin{aligned}
m & =\frac{y_{1}-y_{2}}{x_{1}-x_{2}} \\
P Q m & =\frac{3-8}{-2-3} \\
& =\frac{-5}{-5}=\frac{5}{5} \\
P S m & =\frac{3+(+4)}{-2+(+1)} \\
& =\frac{7}{-1}=-7
\end{aligned}
$$

Score 5: The student wrote an incomplete concluding statement when proving $P Q R S$ is not a square.

Question 35

35 Quadrilateral $P Q R S$ has vertices $P(-2,3), Q(3,8), R(4,1)$, and $S(-1,-4)$.
Prove that $P Q R S$ is a rhombus.
[The use of the set of axes on the next page is optional.]
$\overline{P G}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$=\sqrt{(3+2)^{2}+(9-3)^{2}}$
$=\sqrt{5^{2}+5^{2}}$
$=\sqrt{25+25}$
$=\sqrt{50}$

$Q R=\sqrt{(4-3)^{2}+(1-8)^{2}}$

$$
=\sqrt{-1^{2}+-7^{2}}
$$

$$
=\sqrt{1+49}
$$

$=\sqrt{50}$
$\begin{aligned} \overline{R S} & =\sqrt{(-11=4)^{2}+(-4-1)^{2}} \\ & =\sqrt{-5^{2}+-5^{2}} \\ & =\sqrt{25+25} \\ & =\sqrt{50}\end{aligned}$

Question 35 continued

Prove that $P Q R S$ is not a square.
[The use of the set of axes below is optional.]

Score 4: $P Q R S$ is a rhombus was proven, but no further correct work was shown.

Question 35

35 Quadrilateral $P Q R S$ has vertices $P(-2,3), Q(3,8), R(4,1)$, and $S(-1,-4)$.
Prove that $P Q R S$ is a rhombus.
[The use of the set of axes on the next page is optional.]

Plus wa \mathbb{D} bl both sets of opposite sites of the quad are

$$
\begin{aligned}
& { }_{m}^{\overline{P Q}}=\frac{5}{5}=1 \\
& m \overline{R S}=\frac{5}{5}=1 \\
& m \overline{P S}=-\frac{1}{1}=-1 \\
& m \overline{R R}=-\frac{19 p S}{1}=-11
\end{aligned}
$$

Question 35 is continued on the next page.

Question 35 continued

Prove that $P Q R S$ is not a square.
[The use of the set of axes below is optional.]

Score 3: $\quad P Q R S$ is a parallelogram was proven, but no further correct work was shown.

Question 35

35 Quadrilateral $P Q R S$ has vertices $P(-2,3), Q(3,8), R(4,1)$, and $S(-1,-4)$.
Prove that $P Q R S$ is a rhombus.
[The use of the set of axes on the next page is optional.]

Question 35 is continued on the next page.

Question 35 continued

Prove that $P Q R S$ is not a square.
[The use of the set of axes below is optional.]

Score 2: The student found the lengths of all four sides, but no further correct work was shown.

Question 35

35 Quadrilateral $P Q R S$ has vertices $P(-2,3), Q(3,8), R(4,1)$, and $S(-1,-4)$.
Prove that $P Q R S$ is a rhombus.
[The use of the set of axes on the next page is optional.]

Question 35 is continued on the next page.

Question 35 continued

Prove that $P Q R S$ is not a square.
[The use of the set of axes below is optional.]

Score 1: The student found the slopes of two consecutive sides, but wrote an incomplete concluding statement about why $P Q R S$ is not a square.

Question 35

35 Quadrilateral $P Q R S$ has vertices $P(-2,3), Q(3,8), R(4,1)$, and $S(-1,-4)$.
Prove that $P Q R S$ is a rhombus. = opposite sides are parallel $\$ [The use of the set of axes on the next page is optional.]

ps
$\frac{(4+3)}{-1 \pm 2}=-y_{1}=-7$
$D=\sqrt{(4+1)^{2}+(1+4)^{2}}$
$D=\sqrt{5^{2}+5^{2}}$
$D=\sqrt{25-25}$
$D=\sqrt{50}$
$\frac{1}{55} \sqrt{2}$
$5 \sqrt{2}$

Question 35 continued

Prove that $P Q R S$ is not a square.
[The use of the set of axes below is optional.]

Score 0: The student did not show enough correct work to receive any credit.

36 Freda, who is training to use a radar system, detects an airplane flying at a constant speed and heading in a straight line to pass directly over her location. She sees the airplane at an angle of elevation of 15° and notes that it is maintaining a constant altitude of 6250 feet. One minute later, she sees the airplane at an angle of elevation of 52°. How far has the airplane traveled, to the nearest foot?

$$
\begin{aligned}
& \operatorname{Tan} 52=\frac{625 a}{x} \\
& \frac{6250}{\tan 52}=x \\
& x \approx 4883.0
\end{aligned}
$$

Determine and state the speed of the airplane, to the nearest mile per hour.

$$
\begin{aligned}
& 1 \text { mile }=5280 \\
& \frac{1 \mathrm{~min}}{18442 \mathrm{ft}} \cdot \frac{1 \mathrm{hr}}{60 \mathrm{~min}}=\frac{1 \mathrm{he}}{1106520 \mathrm{ft}} \\
& \frac{1 \mathrm{hr}}{242980 \mathrm{ft}}=\frac{1106520 \mathrm{ft}}{1 \mathrm{mr}} \cdot \frac{1 \mathrm{mi}}{5280} \mathrm{of}^{2}=210 \mathrm{mph}
\end{aligned}
$$

$$
\text { The airplane's speed is } 210 \mathrm{mph}
$$

Score 6: The student gave a complete and correct response.

Question 36

36 Freda, who is training to use a radar system, detects an airplane flying at a constant speed and heading in a straight line to pass directly over her location. She sees the airplane at an angle of elevation of 15° and notes that it is maintaining a constant altitude of 6250 feet. One minute later, she sees the airplane at an angle of elevation of 52°. How far has the airplane traveled, to the nearest foot?

$$
\begin{aligned}
& n=\frac{6250}{\tan 15}=\frac{23,325.3^{\prime}}{x=\frac{6250}{\tan 52}}=\frac{-4,883.0^{\prime}}{18,442.3^{\prime}} \\
& 18,442^{\prime}
\end{aligned} \text { distance traveled in } 1 \mathrm{~min} .
$$

Determine and state the speed of the airplane, to the nearest mile per hour.

$$
\begin{aligned}
& r=\frac{d}{t} \quad(\mathrm{mi} / \mathrm{h}) \\
& \frac{18,442^{\prime}}{1 \mathrm{~min}} \cdot \frac{60 \mathrm{~min}}{1 \mathrm{hr} .} \cdot \frac{1 \mathrm{mi}}{5,280^{\circ}}=210 \mathrm{mi} / \mathrm{h}
\end{aligned}
$$

Score 6: The student gave a complete and correct response.

Question 36

36 Freda, who is training to use a radar system, detects an airplane flying at a constant speed and heading in a straight line to pass directly over her location. She sees the airplane at an angle of elevation of 15° and notes that it is maintaining a constant altitude of 6250 feet. One minute later, she sees the airplane at an angle of elevation of 52°. How far has the airplane traveled, to the nearest foot?

Determine and state the speed of the airplane, to the nearest mile per hour.

Score 5: The student used an acceptable alternative method to find the correct distance traveled by the airplane, but found the speed of the airplane in feet per hour.

Question 36

36 Freda, who is training to use a radar system, detects an airplane flying at a constant speed and heading in a straight line to pass directly over her location. She sees the airplane at an angle of elevation of 15° and notes that it is maintaining a constant altitude of 6250 feet. One minute later, she sees the airplane at an angle of elevation of 52°. How far has the airplane traveled, to the nearest foot?

Determine and state the speed of the airplane, to the nearest mile per hour.

Score 4: The student found the correct distance traveled by the airplane, but no further correct work was shown.

Question 36

36 Freda, who is training to use a radar system, detects an airplane flying at a constant speed and heading in a straight line to pass directly over her location. She sees the airplane at an angle of elevation of 15° and notes that it is maintaining a constant altitude of 6250 feet. One minute later, she sees the airplane at an angle of elevation of 52°. How far has the airplane traveled, to the nearest foot?

Determine and state the speed of the airplane, to the nearest mile per hour.

$$
\begin{aligned}
1 \text { mile }=5280 \text { feet } & 16217 \mathrm{ft} / \mathrm{min} \\
1 \text { hour }=60 \text { minutes } & \begin{aligned}
& \frac{16217}{5280}=3.0714 \mathrm{ft} / \mathrm{min} \\
& 3.0714 .60=184.824 \\
& 185 \text { miles per } \\
& \text { hour }
\end{aligned}
\end{aligned}
$$

Score 3: The student made an error by using the sine function and made a transcription error.

Question 36

36 Freda, who is training to use a radar system, detects an airplane flying at a constant speed and heading in a straight line to pass directly over her location. She sees the airplane at an angle of elevation of 15° and notes that it is maintaining a constant altitude of 6250 feet. One minute later, she sees the airplane at an angle of elevation of 52°. How far has the airplane traveled, to the nearest foot?

The arplone traveled $3,276 \mathrm{ft}$

Determine and state the speed of the airplane, to the nearest mile per hour.

$$
\begin{aligned}
& \sin 15^{\circ}=\frac{6250}{x} \\
& \frac{6250}{\sin 15}=\frac{x \sin 15}{\sin 15} \\
& \frac{6250}{\sin 15}=x \\
& x=9611
\end{aligned}
$$

$$
\sin 52^{\circ}=\frac{6250}{x}
$$

$$
\frac{6250}{\sin 52}=\frac{x \sin 52}{\sin 52}
$$

$$
\frac{6250}{\sin 52}=x
$$

$$
x=6335
$$

The speed 196,560 per hour

of the airplane is

$$
\begin{aligned}
& 1 \text { min }=60 \mathrm{sec} \\
& 1 \text { hour }=60 \text { minutes } \\
& \qquad 3276 \times 60=196560
\end{aligned}
$$

Score 2: The student made one conceptual error by using the sine function and two other errors by using radian measure and not dividing by 5280 .

Question 36

36 Freda, who is training to use a radar system, detects an airplane flying at a constant speed and heading in a straight line to pass directly over her location. She sees the airplane at an angle of elevation of 15° and notes that it is maintaining a constant altitude of 6250 feet. One minute later, she sees the airplane at an angle of elevation of 52°. How far has the airplane traveled, to the nearest foot?

$$
\begin{array}{rlrl}
\tan 15^{\circ} & =\frac{6250}{x} & \tan 52^{\circ} & =\frac{x}{23148.15} \\
0.27 & =\frac{6250}{x} & 1.28 & =\frac{x}{23148.15} \\
\frac{x(0.27)}{0.27} & =\frac{6250}{0.27} & 29629.6=x \\
x & =23148.15 & f t & =(29629.6-6250) \\
& =23379.6
\end{array}
$$

$$
\text { The airplane has traveled } 23379.6 \text { foot far. } 23148.15
$$

Determine and state the speed of the airplane, to the nearest mile per hour.

$$
\begin{aligned}
\text { minute } & =20629.6 \text { foot } \\
60 \text { a } & =(60 \times 29629.6) \\
& =1777776
\end{aligned}
$$

The nearest mile per hour is
 1777776.

Score 1: The student wrote only one correct relevant trigonometric equation. No further correct work was shown.

Question 36

36 Freda, who is training to use a radar system, detects an airplane flying at a constant speed and heading in a straight line to pass directly over her location. She sees the airplane at an angle of elevation of 15° and notes that it is maintaining a constant altitude of 6250 feet. One minute later, she sees the airplane at an angle of elevation of 52°. How far has the airplane traveled, to the nearest foot?

Determine and state the speed of the airplane, to the nearest mile per hour.

Score 0: The student had a completely incorrect response.

