Note: All schools (public, nonpublic, and charter) administering the Grade 4 Elementary-Level Science Test are required to make arrangements to obtain answer sheets and associated scanning services from a Regional Information Center (RIC) or a large-city scanning center. These centers will scan and score the answer sheets according to the following criteria:

1. One credit will be awarded for each correct response.
2. Credit will not be allowed if two or more answers have been marked for the same question.
3. The raw score for Part I will be determined by counting the number of correct responses.

For information only, correct responses are listed in the chart below.

<table>
<thead>
<tr>
<th>Question Number</th>
<th>Correct Response</th>
<th>Question Number</th>
<th>Correct Response</th>
<th>Question Number</th>
<th>Correct Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>11</td>
<td>B</td>
<td>21</td>
<td>D</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>12</td>
<td>D</td>
<td>22</td>
<td>D</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>13</td>
<td>D</td>
<td>23</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>14</td>
<td>A</td>
<td>24</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>15</td>
<td>C</td>
<td>25</td>
<td>D</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>16</td>
<td>A</td>
<td>26</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td>D</td>
<td>17</td>
<td>B</td>
<td>27</td>
<td>B</td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>18</td>
<td>C</td>
<td>28</td>
<td>B</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>19</td>
<td>D</td>
<td>29</td>
<td>D</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>20</td>
<td>C</td>
<td>30</td>
<td>C</td>
</tr>
</tbody>
</table>
This rating guide contains detailed directions for rating student responses to Part II of the written test in Elementary-Level Science. All raters should become familiar with the detailed directions before beginning to rate student responses.

Appendix A provides a performance levels chart that translates final scores into four performance levels. A conversion chart is also needed to translate a student's raw scores on the written and performance tests to a final score. This chart will be posted on the Department's web site http://www.p12.nysed.gov/assessment/. Conversion charts provided for previous administrations of this test must not be used to determine student's final scores for the 2016 administration of the test.

Appendix B provides four charts that link the individual questions on the test to the Elementary-Level Science Core Curriculum Grades K-4. This core curriculum is based on the New York State Learning Standards in Mathematics, Science, and Technology.

Any clarifications or changes to this rating guide will be posted on the New York State Education Department web site at http://www.p12.nysed.gov/assessment/ during the rating period. Check the “Scoring Information” link at this web site before starting the rating process and several times during the rating period.

Questions regarding this test should be directed to the Office of State Assessment at (518) 474-5900.

Note: Retain this rating guide for future use. Do not return it to the Department with the performance test materials.
Detailed Directions for Rating Part II of the Written Test

Note: Teachers are not permitted to score their own students’ responses.

This guide contains detailed directions and criteria for rating student responses to the questions in Part II of the written test. Raters should become familiar with the detailed directions and rating criteria before beginning to rate the student responses. Refer to the 2016 Manual for Administrators and Teachers for suggestions about organizing the rating process.

In rating the student responses, follow the procedure outlined below.

1. Familiarize yourself with the system your school is using for processing the answer papers and recording the student scores.

2. Have a test booklet on hand. Read each Part II question carefully. Note exactly what is required.

3. Carefully read the criteria provided in this guide for rating each question.

4. For most questions, examples of acceptable responses are provided. Acceptable responses include, but are not limited to, the examples given. Other responses that convey the same general meaning as those given in this guide should also receive credit. Raters must use their professional judgment to decide if the student’s answer meets the criteria. You may find it helpful to discuss questionable student responses with other raters.

5. Acceptable responses separated by a slash (/) are considered to be the same response and should be counted for credit once.

6. Discuss with other raters the requirements of each question and the rating criteria. When you are certain that you clearly understand the requirements and criteria, you are ready to begin rating the student responses.

7. It is recommended that you rate all the student responses to one question or group of questions before proceeding to the next question or group of questions. This method helps ensure that the rating criteria are applied consistently.

8. Students should *not* lose credit for incorrect spelling, grammar, capitalization, or punctuation.

9. In responses to questions where a specific number of answers are required (e.g., identify *three* materials, give *two* examples), if the student provides more than the required number of responses, score only the required number, in the order in which they appear.

10. Record the number of credits you allow for each question in the table provided on the back cover of the test booklet. The maximum number of credits for each question appears in the table.
11. When you have finished rating all the Part II questions, add the credits allowed for each question to obtain the total raw score for Part II.

12. Follow your school’s procedure for transferring Part II scores to the student’s scannable answer sheet. These are local decisions that depend on the answer sheet your school uses. Some schools will transfer a score for each Part II question while others may transfer a total raw score for Part II. Check to be certain that the student name on the test booklet matches the name on the answer sheet.

Online Submission of Teacher Evaluations of the Test to the Department

Suggestions and feedback from teachers provide an important contribution to the test development process. The Department provides an online evaluation form for State assessments. It contains spaces for teachers to respond to several specific questions and to make suggestions. Instructions for completing the evaluation form are as follows:

2. Select the test title.
3. Complete the required demographic fields.
4. Complete each evaluation question and provide comments in the space provided.
5. Click the SUBMIT button at the bottom of the page to submit the completed form.
31 [1] Allow 1 credit for all six Xs placed in the correct columns as shown in the chart below.

<table>
<thead>
<tr>
<th>Object</th>
<th>Sank</th>
<th>Floated</th>
</tr>
</thead>
<tbody>
<tr>
<td>clay boat</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>clay ball</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>plastic duck</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>plastic cup</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>metal spoon</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>metal nail</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Note: Allow credit if a symbol other than an X is used.

32 [1] Allow 1 credit for 6:15 a.m.

33 [1] Allow 1 credit for a correct body structure in all four unshaded rows. Acceptable responses include, but are not limited to:

<table>
<thead>
<tr>
<th>Observation of Fruit</th>
<th>Sense</th>
<th>Body Structure Used to Make this Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>smooth surface</td>
<td>touch</td>
<td>skin</td>
</tr>
<tr>
<td>fruity</td>
<td>smell</td>
<td>nose</td>
</tr>
<tr>
<td>red color</td>
<td>sight</td>
<td>eye(s)</td>
</tr>
<tr>
<td>makes a sound when dropped</td>
<td>hearing</td>
<td>ear(s)</td>
</tr>
</tbody>
</table>
| sweet | taste | — tongue
| | | — mouth
| | | — tastebud(s)
| | | — nose |
34 [1] Allow 1 credit for *all three* letters placed correctly, as shown below.

![Imagery of an insect, a budgie, and a lizard]

C B A

Note: Allow credit if the student names butterfly, frog, alligator/crocodile, instead of C, B, A.

35 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

- Plants grow toward the light.
- It was growing out to get to the sunlight.
- It grew toward the sunlight.
- It needed light/needs light for making food
- to get sunlight
- phototropism response

36 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

- to see what happened without a box
- to see how it would be different from B
- Plant A was a control.
- to compare B to A

37 [1] Allow 1 credit. Acceptable responses include, but are not limited to:

- The tree will lose its leaves.
- The tree will become bare.
- The leaves will change color.
- The leaves will fall.
- The leaves will die.
- Acorns will fall off the tree.

Note: Do not allow credit for “the tree will die” since this is not a seasonal change.
38 [1] Allow 1 credit for the *two* words placed as shown in the chart below.

<table>
<thead>
<tr>
<th>Description of Earth Motion</th>
<th>Name of Earth Motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth moves in a path around the Sun, causing one year.</td>
<td>revolution</td>
</tr>
<tr>
<td>Earth spins around once every 24 hours, causing day and night.</td>
<td>rotation</td>
</tr>
</tbody>
</table>

39 [1] Allow 1 credit for the Sun or sunlight.

40 [1] Allow 1 credit for plant(s).

Note: Allow credit if the student identifies “seaweed” or “algae,” even though these two organisms are not classified as true plants.

41 [1] Allow 1 credit for turtle(s).
[42] Allow 1 credit for *three* acceptable responses, as shown in the chart below.

<table>
<thead>
<tr>
<th>Diagram</th>
<th>Simple Machine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>inclined plane</td>
</tr>
<tr>
<td></td>
<td>pulley</td>
</tr>
<tr>
<td></td>
<td>lever</td>
</tr>
</tbody>
</table>

[43] Allow a maximum of 2 credits, 1 credit for each acceptable response. Acceptable responses include, but are not limited to:

- The battery is dead./needs new batteries
- batteries missing
- batteries put in wrong
- The lightbulb is dead./has a broken filament/bulb is broken
- circuit is open
- The switch is broken.
- A wire is broken.
- circuit is broken

Note: Acceptable responses must include two different reasons.
Allow 1 credit. Acceptable responses include, but are not limited to:

- flood
- hurricane
- heavy rain
- sudden melting of snow upstream
- thunderstorm/storm
- earthquake destroyed a nearby dam
Appendix A

New York State Grade 4 Elementary-Level Science Test
June 2016

Performance Levels Chart

The chart on the next page defines the four performance levels for this test. The State-designated level of performance for this test is a final score of 65 or higher (levels 3 and 4). The chart provides the score range and a brief description of student performance for each level.

The conversion chart will be posted on the Department’s web site http://www.p12.nysed.gov/assessment/ through the “Scoring Information” link.

Note: Conversion charts provided for previous administrations of this test must not be used to determine students’ final scores for the 2016 administration.
Performance Levels for Final Score
Grade 4 Elementary-Level Science Test

<table>
<thead>
<tr>
<th>Level</th>
<th>Final Test Score Range</th>
<th>Description of Student Performance</th>
</tr>
</thead>
</table>
| 4 | 85–100 | **Meeting the Standards with Distinction**
• A student demonstrates superior understanding of elementary-level science content and concepts for the learning standards and key ideas being assessed.
• The student demonstrates superior elementary-level science skills related to the learning standards and key ideas being assessed.
• The student demonstrates superior understanding of the science content, concepts, and skills required for an elementary-level academic environment. |
| 3 | 65–84 | **Meeting the Standards**
• The student demonstrates understanding of elementary-level science content and concepts for the learning standards and key ideas being assessed.
• The student demonstrates elementary-level science skills related to the learning standards and key ideas being assessed.
• The student demonstrates understanding of the science content, concepts, and skills required for an elementary-level academic environment. |
| 2 | 45–64 | **Not Fully Meeting the Standards**
• The student demonstrates only minimal understanding of elementary-level science content and concepts for each of the learning standards and key ideas being assessed.
• The student demonstrates minimal elementary-level science skills related to the learning standards and key ideas being assessed.
• The student demonstrates minimal understanding of the science content, concepts, and skills required for an elementary-level academic environment. |
| 1 | 0–44 | **Not Meeting the Standards**
• The student is unable to demonstrate understanding of elementary-level science content and concepts for the learning standards and key ideas being assessed.
• The student is unable to demonstrate elementary-level science skills related to the learning standards and key ideas being assessed.
• The student is unable to demonstrate understanding of the science content, concepts, and skills required for an elementary-level academic environment. |
Appendix B

Item Maps

New York State Grade 4 Elementary-Level Science Test
June 2016 Written Test
Performance Test Form A

Item maps contained in this appendix:

- Reference to *Elementary-Level Science Core Curriculum Grades K–4* — June 2016 Written Test and Performance Test, Form A
- Reference to Process Skills Based on Standard 4 — June 2016 Written Test and Performance Test, Form A
- Reference to Core Curriculum for Individual Test Questions — June 2016 Written Test
- Reference to Core Curriculum for Individual Test Questions — Performance Test, Form A

Note: Core curriculum is based on *NYS Learning Standards for Mathematics, Science, and Technology.*
<table>
<thead>
<tr>
<th>Standard/Area</th>
<th>Reference to Elementary-Level Science Core Curriculum Grades K-4 Key Idea or Performance Indicator</th>
<th>Performance Test Form A Question Number</th>
<th>June 2016 Written Test Question Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 1 Mathematical Analysis</td>
<td>M1 Abstraction and symbolic representation are used to communicate mathematically.</td>
<td>Station 1: 1, 2, 4, 5; Station 2: 1; Station 3: 28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M2 Deductive and inductive reasoning are used to reach mathematical conclusions.</td>
<td></td>
<td>3, 5</td>
</tr>
<tr>
<td></td>
<td>M3 Critical thinking skills are used in the solution of mathematical problems.</td>
<td>Station 1: 1, 2, 4; Station 2: 1, 3; Station 3: 1</td>
<td></td>
</tr>
</tbody>
</table>

Standard 1 Scientific Inquiry Key Idea 1	**S1.1** Ask “why” questions in attempts to seek greater understanding concerning objects and events they have observed and heard about.		29
	S1.2 Question the explanations they hear from others and read about, seeking clarification and comparing them with their own observations and understandings.		4
	S1.3 Develop relationships among observations to construct descriptions of objects and events and to form their own tentative explanations of what they have observed.		2

Standard 1 Scientific Inquiry Key Idea 2	**S2.1** Develop written plans for exploring phenomena or for evaluating explanations guided by questions or proposed explanations they have helped formulate.		36
	S2.2 Share their research plans with others and revise them based on their suggestions.		
	S2.3 Carry out their plans for exploring phenomena through direct observation and through the use of simple instruments that permit measurement of quantities such as length, mass, volume, temperature, and time.		1

Standard 1 Scientific Inquiry Key Idea 3	**S3.1** Organize observations and measurements of objects and events through classification and the preparation of simple charts and tables.	Station 1: 1, 3; Station 2: 1, 3; Station 3: 31	
	S3.2 Interpret organized observations and measurements, recognizing simple patterns, sequences, and relationships.	Station 1: 2, 4; Station 2: 2, 3; Station 3:	
	S3.3 Share their findings with others and actively seek their interpretations and ideas.	Station 1: 4	
	S3.4 Adjust their explanations and understandings of objects and events based on their findings and new ideas.	Station 1: 4, 5	

<p>| Standard 1 Engineering Design | T1.1–T1.5 Engineering design is an iterative process involving modeling and optimization to develop technological solutions to problems within given constraints. | | 4 |</p>
<table>
<thead>
<tr>
<th>Standard/Area</th>
<th>Reference to Elementary-Level Science Core Curriculum Grades K-4 Key Idea or Performance Indicator</th>
<th>Performance Test Form A Question Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 2 Information Systems</td>
<td>Students will access, generate, process, and transfer information using appropriate technologies.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Information technology is used to retrieve, process, and communicate information as a tool to enhance learning.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 Knowledge of the impacts and limitations of information systems is essential to its effectiveness and ethical use.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Information technology can have positive and negative impacts on society, depending upon how it is used.</td>
<td></td>
</tr>
<tr>
<td>Standard 4 The Physical Setting</td>
<td>1 Earth and celestial phenomena can be described by principles of relative motion and perspective.</td>
<td>14, 38</td>
</tr>
<tr>
<td></td>
<td>2 Many of the phenomena that we observe on Earth involve interactions among components of air, water, and land.</td>
<td>16, 23, 44</td>
</tr>
<tr>
<td></td>
<td>3 Matter is made up of particles whose properties determine the observable characteristics of matter and its reactivity.</td>
<td>1, 2, 3, 4, 5 1, 2 12, 18, 19, 20, 25, 30</td>
</tr>
<tr>
<td></td>
<td>4 Energy exists in many forms, and when these forms change energy is conserved.</td>
<td>1, 2 17, 21, 22, 43</td>
</tr>
<tr>
<td></td>
<td>5 Energy and matter interact through forces that result in changes in motion.</td>
<td>3, 4 1, 2, 3, 4, 5 15, 24, 26, 27, 42</td>
</tr>
<tr>
<td>Standard 4 The Living Environment</td>
<td>1 Living things are both similar to and different from each other and from nonliving things.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2 Organisms inherit genetic information in a variety of ways that result in continuity of structure and function between parents and offspring.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3 Individual organisms and species change over time.</td>
<td>4, 6, 9, 33</td>
</tr>
<tr>
<td></td>
<td>4 The continuity of life is sustained through reproduction and development.</td>
<td>11, 34</td>
</tr>
<tr>
<td></td>
<td>5 Organisms maintain a dynamic equilibrium that sustains life.</td>
<td>3, 5, 7, 10, 35, 37</td>
</tr>
<tr>
<td></td>
<td>6 Plants and animals depend on each other and their physical environment.</td>
<td>8, 39, 40, 41</td>
</tr>
<tr>
<td></td>
<td>7 Human decisions and activities have had a profound impact on the physical and living environment.</td>
<td>13</td>
</tr>
<tr>
<td>Standard 6</td>
<td>Interconnectedness: Common Themes</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>Students will understand the relationships and common themes that connect mathematics, science, and technology and apply the themes to these and other areas of learning.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key Idea or Performance Indicator</th>
<th>Performance Test Form A Question Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Systems Thinking Through systems thinking, people can recognize the commonalities that exist among all systems and how parts of a system interrelate and combine to perform specific functions.</td>
<td>Station 1</td>
</tr>
</tbody>
</table>

| **2 Models** Models are simplified representations of objects, structures, or systems used in analysis, explanation, interpretation, or design. | |

| **3 Magnitude and Scale** The grouping of magnitudes of size, time, frequency, and pressures or other units of measurement into a series of relative order provides a useful way to deal with the immense range and the changes in scale that affect the behavior and design of systems. | |

| **4 Equilibrium and Stability** Equilibrium is a state of stability due either to a lack of change (static equilibrium) or a balance between opposing forces (dynamic equilibrium). | |

| **5 Patterns of Change** Identifying patterns of change is necessary for making predictions about future behavior and conditions. | 2, 3 | 32 | |

| **6 Optimization** In order to arrive at the best solution that meets criteria within constraints, it is often necessary to make trade-offs. | 5 | |

<table>
<thead>
<tr>
<th>Standard 7</th>
<th>Interdisciplinary Problem Solving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will understand the relationships and common themes that connect mathematics, science, and technology and apply the themes to these and other areas of learning.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key Idea or Performance Indicator</th>
<th>Performance Test Form A Question Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Connections The knowledge and skills of mathematics, science, and technology are used together to make informed decisions and solve problems, especially those related to issues of science/technology/society, consumer decision-making, design, and inquiry into phenomena.</td>
<td></td>
</tr>
</tbody>
</table>

<p>| 2 Strategies Solving interdisciplinary problems involves a variety of skills and strategies, including effective work habits; gathering and processing information; generating and analyzing ideas; realizing ideas; making connections among the common themes of mathematics, science, and technology; and presenting results. | |</p>
<table>
<thead>
<tr>
<th>Process Skills–General Skills</th>
<th>Performance Test Form A Question Number</th>
<th>June 2016 Written Test Question Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>(From Grade 4 Elementary-Level Science Core Curriculum Grades K-4)</td>
<td>Station 1</td>
<td>Station 2</td>
</tr>
<tr>
<td>i follow safety procedures in the classroom, laboratory, and field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii safely and accurately use the following tools: hand lens, ruler (metric), balance, gram weights, spring scale, thermometer (C°, F°), measuring cups, graduated cylinder, timepiece(s)</td>
<td>1, 2, 4</td>
<td></td>
</tr>
<tr>
<td>iii develop an appreciation of and respect for all learning environments (classroom, laboratory, field, etc.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iv manipulate materials through teacher direction and free discovery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v use information systems appropriately</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vi select appropriate standard and nonstandard measurement tools for measurement activities</td>
<td>1, 2, 4</td>
<td></td>
</tr>
<tr>
<td>vii estimate, find, and communicate measurements, using standard and nonstandard units</td>
<td>1, 2, 4, 5</td>
<td>5, 28</td>
</tr>
<tr>
<td>viii use and record appropriate units for measured or calculated values</td>
<td>2, 5</td>
<td></td>
</tr>
<tr>
<td>ix order and sequence objects and/or events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x classify objects according to an established scheme</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>xi generate a scheme for classification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xii utilize senses optimally for making observations</td>
<td></td>
<td>19, 33</td>
</tr>
<tr>
<td>xiii observe, analyze, and report observations of objects and events</td>
<td>3</td>
<td>1, 3</td>
</tr>
<tr>
<td>xiv observe, identify, and communicate patterns</td>
<td></td>
<td>2, 3</td>
</tr>
<tr>
<td>xv observe, identify, and communicate cause and effect relationships</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>xvi generate appropriate questions (teacher and student based) in response to observations, events, and other experiences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xvii observe, collect, organize, and appropriately record data, then accurately interpret results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xviii collect and organize data, choosing the appropriate representation: journal entries, graphic representations, drawings/pictorial representations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xix make predictions based on prior experiences and/or information</td>
<td></td>
<td>2, 3, 5</td>
</tr>
<tr>
<td>xx compare and contrast organisms/objects/events in the living and physical environments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xxi identify and control variables/factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xxiv plan, design, and implement a short-term and long-term investigation based on a student- or teacher-posed problem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xxiii communicate procedures and conclusions through oral and written presentations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ELS Rating Guide—June ’16
Grade 4 Elementary-Level Science Written Test – June 2016

Reference to *Elementary-Level Science Core Curriculum* for Individual Test Questions

<table>
<thead>
<tr>
<th>Question Number</th>
<th>MST Learning Standard</th>
<th>Area within Standard 4 (PS or LE)</th>
<th>Key Idea or Major Understanding</th>
<th>Other Standards, Key Ideas, or Major Understandings</th>
<th>Process Skills Based on Standard 4 (p. 11 in core)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>LE</td>
<td>1.1c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>LE</td>
<td>2.1b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>LE</td>
<td>5.2f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>LE</td>
<td>3.1b</td>
<td>St 6 KI 2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>LE</td>
<td>5.3b</td>
<td>5.3a; St 6 KI 2; St 1 M 2.1</td>
<td>vii</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>LE</td>
<td>3.1c</td>
<td>3.1b; St 6 KI 2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>LE</td>
<td>5.2f</td>
<td>St 6 KI 2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>LE</td>
<td>6.1d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>LE</td>
<td>3.1c</td>
<td>5.2e</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>LE</td>
<td>5.2g</td>
<td>6.1e,f; 7.1c</td>
<td>xv</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>LE</td>
<td>4.2b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>PS</td>
<td>3.1a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>LE</td>
<td>7.1c</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>PS</td>
<td>1.1a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>PS</td>
<td>5.1f</td>
<td>St 1 M 3.1a; M 1.1c</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>PS</td>
<td>2.1d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>4</td>
<td>PS</td>
<td>4.2b</td>
<td>4.2a; St 6 KI 2</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>4</td>
<td>PS</td>
<td>3.1d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>4</td>
<td>PS</td>
<td>3.1c</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>PS</td>
<td>3.2a</td>
<td>3.1f</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>4</td>
<td>PS</td>
<td>4.1d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4</td>
<td>PS</td>
<td>4.1a</td>
<td>4.1d,f; 4.2b; St 6 KI 2</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4</td>
<td>PS</td>
<td>2.1c</td>
<td>3.2b; St 6 KI 2</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4</td>
<td>PS</td>
<td>5.1c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>4</td>
<td>PS</td>
<td>3.1g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>4</td>
<td>PS</td>
<td>5.1e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>4</td>
<td>PS</td>
<td>5.1d</td>
<td>5.1f; St 6 KI 2</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>-</td>
<td>M 1.1b</td>
<td>M 1.1c; PS 2.1b</td>
<td>vii</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>-</td>
<td>S1.1a</td>
<td>PS 3.1c</td>
<td>xiii</td>
</tr>
<tr>
<td>30</td>
<td>4</td>
<td>PS</td>
<td>3.2b</td>
<td>2.1b; St 6 KI 2; St 1 S 3.2</td>
<td>xiii</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>-</td>
<td>S 3.1</td>
<td>PS 3.1c,e,f; St 6 KI 2</td>
<td>x, xvii</td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>-</td>
<td>KI 5</td>
<td>PS 1.1a, b, c; St 1 S 3.2</td>
<td>xiv, xix</td>
</tr>
<tr>
<td>33</td>
<td>4</td>
<td>LE</td>
<td>3.1a</td>
<td>5.2c; PS 3.1b</td>
<td>xii</td>
</tr>
<tr>
<td>34</td>
<td>4</td>
<td>LE</td>
<td>4.1a</td>
<td>4.1e; St 6 KI 2</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>4</td>
<td>LE</td>
<td>5.2a</td>
<td>5.2g; St 6 KI 2</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>-</td>
<td>S2</td>
<td>LE</td>
<td>xxi</td>
</tr>
<tr>
<td>37</td>
<td>4</td>
<td>LE</td>
<td>5.2a</td>
<td>St 6 KI 5</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>4</td>
<td>PS</td>
<td>1.1a</td>
<td>St 6 KI 1</td>
<td>xv</td>
</tr>
<tr>
<td>39</td>
<td>4</td>
<td>LE</td>
<td>6.2b</td>
<td>6.1c; St 6 KI 2</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>4</td>
<td>LE</td>
<td>6.1a</td>
<td>6.1c; St 6 KI 2</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>4</td>
<td>LE</td>
<td>6.1b</td>
<td>St 6 KI 2, 6.1c</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>4</td>
<td>PS</td>
<td>5.1f</td>
<td>St 6 KI 2</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>4</td>
<td>PS</td>
<td>4.1e</td>
<td>4.1d; St 1 T 1.1b</td>
<td>xv</td>
</tr>
<tr>
<td>44</td>
<td>4</td>
<td>PS</td>
<td>2.1e</td>
<td>St 6 KI 2</td>
<td></td>
</tr>
<tr>
<td>Station</td>
<td>Item No.</td>
<td>Task</td>
<td>Credits</td>
<td>General Skills (p. 11)</td>
<td>Reference to Elementary Science Core Curriculum</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>------</td>
<td>---------</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MST Standard 1</td>
<td>MST Standard 6 Interconnected/ Common Themes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Mathematical Analysis, Scientific Inquiry, and Engineering Design)</td>
<td>Key Idea/Performance Indicator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Key Idea/Performance Indicator</td>
<td>Key Idea/Performance Indicator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Key Idea/Performance Indicator</td>
<td>Key Idea/Performance Indicator</td>
</tr>
<tr>
<td>1</td>
<td>1a</td>
<td>width height</td>
<td>1</td>
<td>ii vii</td>
<td>M 1.1c M 3.1a</td>
</tr>
<tr>
<td></td>
<td>1b</td>
<td>width height</td>
<td>1</td>
<td>ii vii viii</td>
<td>M 1.1c M 3.1a</td>
</tr>
<tr>
<td>(9 credits total)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>volume</td>
<td>2</td>
<td>ii vii viii</td>
<td>M 1.1c M 3.1a</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>water level up</td>
<td>1</td>
<td>xiii xv</td>
<td>3.1a 3.1c</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>mass of two jars</td>
<td>1</td>
<td>ii vii</td>
<td>M 1.1c M 3.1a</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>mass of water, only</td>
<td>3</td>
<td>vii viii</td>
<td>M 1.1b M 1.1c</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>electricity data</td>
<td>2</td>
<td>xiii</td>
<td>M 3.1a S 3.1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>statement about electricity</td>
<td>3</td>
<td>xx</td>
<td>S 1.3 S 3.2a</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>magnet data</td>
<td>2</td>
<td>xiii</td>
<td>M 3.1a S 3.1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>explanation</td>
<td>2</td>
<td>xx</td>
<td>S 1.2 S 3.2a S 3.3a</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>collect data</td>
<td>2</td>
<td>xiii</td>
<td>M 1.1c M 3.1a S 2.3a S 2.3b</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>predict where to release the ball</td>
<td>1</td>
<td>xiv xix</td>
<td>S 3.2</td>
</tr>
<tr>
<td>(8 credits total)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>explain response to No.2</td>
<td>1</td>
<td>xiv xix</td>
<td>M 2.1a M 2.1b S 3.2a</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>suggest a change to the setup</td>
<td>2</td>
<td>xxi</td>
<td>T 1.3c S 3.4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>explain response to No.4</td>
<td>2</td>
<td>xix</td>
<td>M 2.1b S 3.4a</td>
</tr>
</tbody>
</table>