The possession or use of any communications device is strictly prohibited when taking this examination. If you have or use any communications device, no matter how briefly, your examination will be invalidated and no score will be calculated for you.

This is a test of your knowledge of chemistry. Use that knowledge to answer all questions in this examination. Some questions may require the use of the 2011 Edition Reference Tables for Physical Setting/Chemistry. You are to answer all questions in all parts of this examination according to the directions provided in this examination booklet.

A separate answer sheet for Part A and Part B–1 has been provided to you. Follow the instructions from the proctor for completing the student information on your answer sheet. Record your answers to the Part A and Part B–1 multiple-choice questions on this separate answer sheet. Record your answers for the questions in Part B–2 and Part C in your separate answer booklet. Be sure to fill in the heading on the front of your answer booklet.
All answers in your answer booklet should be written in pen, except for graphs and drawings, which should be done in pencil. You may use scrap paper to work out the answers to the questions, but be sure to record all your answers on your separate answer sheet or in your answer booklet as directed.

When you have completed the examination, you must sign the statement printed on your separate answer sheet, indicating that you had no unlawful knowledge of the questions or answers prior to the examination and that you have neither given nor received assistance in answering any of the questions during the examination. Your answer sheet and answer booklet cannot be accepted if you fail to sign this declaration.

Notice. . .
A four-function or scientific calculator and a copy of the 2011 Edition Reference Tables for Physical Setting/Chemistry must be available for you to use while taking this examination.

DO NOT START THIS EXAMINATION UNTIL THE SIGNAL IS GIVEN.
Part A

Answer all questions in this part.

Directions (1–30): For each statement or question, record on your separate answer sheet the number of the word or expression that, of those given, best completes the statement or answers the question. Some questions may require the use of the 2011 Edition Reference Tables for Physical Setting/Chemistry.

1 Which statement describes the earliest model of the atom?
 (1) An atom is an indivisible hard sphere.
 (2) An atom has a small, dense nucleus.
 (3) Electrons are negative particles in an atom.
 (4) Electrons in an atom have wave-like properties.

2 In all atoms of bismuth, the number of electrons must equal the
 (1) number of protons
 (2) number of neutrons
 (3) sum of the number of neutrons and protons
 (4) difference between the number of neutrons and protons

3 Which symbol represents a particle that has a mass approximately equal to the mass of a neutron?
 (1) \(\alpha \)
 (2) \(\beta^+ \)
 (3) \(\beta^- \)
 (4) \(p \)

4 An orbital is a region in an atom where there is a high probability of finding
 (1) an alpha particle
 (2) an electron
 (3) a neutron
 (4) a positron

5 Which electron shell in an atom of calcium in the ground state has an electron with the greatest amount of energy?
 (1) 1
 (2) 2
 (3) 3
 (4) 4
6 As the elements in Period 2 are considered in order from lithium to fluorine, there is an increase in the
(1) atomic radius
(2) electronegativity
(3) number of electron shells
(4) number of electrons in the first shell

7 Which element is classified as a metalloid?
(1) boron
(2) potassium
(3) sulfur
(4) xenon

8 Strontium and barium have similar chemical properties because atoms of these elements have the same number of
(1) protons
(2) neutrons
(3) electron shells
(4) valence electrons

9 Which term represents the fixed proportion of elements in a compound?
(1) atomic mass
(2) molar mass
(3) chemical formula
(4) density formula

10 Which two terms represent types of chemical formulas?
(1) mechanical and structural
(2) mechanical and thermal
(3) molecular and structural
(4) molecular and thermal

11 Which element has metallic bonds at room temperature?
(1) bromine
(2) cesium
(3) krypton
(4) sulfur

12 What is the number of electrons shared between the atoms in a molecule of nitrogen, N₂?
(1) 8
(2) 2
(3) 3
(4) 6

13 Given the equation representing a reaction:

\[H + H \rightarrow H_2 \]

What occurs during this reaction?
(1) A bond is broken and energy is absorbed.
(2) A bond is broken and energy is released.
(3) A bond is formed and energy is absorbed.
(4) A bond is formed and energy is released.
14. An atom of which element has the strongest attraction for electrons in a chemical bond?
 (1) chlorine (3) phosphorus
 (2) carbon (4) sulfur

15. At STP, a 50.-gram sample of H₂O(ℓ) and a 100.-gram sample of H₂O(ℓ) have
 (1) the same chemical properties
 (2) the same volume
 (3) different temperatures
 (4) different empirical formulas

16. Which statement describes a mixture of sand and water at room temperature?
 (1) It is heterogeneous, and its components are in the same phase.
 (2) It is heterogeneous, and its components are in different phases.
 (3) It is homogeneous, and its components are in the same phase.
 (4) It is homogeneous, and its components are in different phases.

17. Distillation is a process used to separate a mixture of liquids based on different
 (1) boiling points (3) freezing points
 (2) densities (4) solubilities

18. According to the kinetic molecular theory, which statement describes the particles in a sample of an ideal gas?
 (1) The particles are constantly moving in circular paths.
 (2) The particles collide, decreasing the total energy of the system.
 (3) The particles have attractive forces between them.
 (4) The particles are considered to have negligible volume.

19. Which sample of matter has the greatest distance between molecules at STP?
 (1) N₂(g) (3) C₆H₁₄(ℓ)
 (2) NH₃(aq) (4) C₆H₁₂O₆(s)
20 For a chemical system at equilibrium, the concentrations of both the reactants and the products must
(1) decrease (3) be constant
(2) increase (4) be equal

21 In terms of disorder and energy, systems in nature have a tendency to undergo changes toward
(1) less disorder and lower energy
(2) less disorder and higher energy
(3) greater disorder and lower energy
(4) greater disorder and higher energy

22 The only two elements in alkenes and alkynes are
(1) carbon and nitrogen
(2) carbon and hydrogen
(3) oxygen and nitrogen
(4) oxygen and hydrogen

23 Which functional group contains a nitrogen atom and an oxygen atom?
(1) ester (3) amide
(2) ether (4) amine

24 When a sample of Mg(s) reacts completely with O₂(g), the Mg(s) loses 5.0 moles of electrons. How many moles of electrons are gained by the O₂(g)?
(1) 1.0 mol (3) 5.0 mol
(2) 2.5 mol (4) 10.0 mol

25 Which statement describes the reactions in an electrochemical cell?
(1) Oxidation occurs at the anode, and reduction occurs at the cathode.
(2) Oxidation occurs at the cathode, and reduction occurs at the anode.
(3) Oxidation and reduction both occur at the cathode.
(4) Oxidation and reduction both occur at the anode.

26 A 0.050 M aqueous solution of which compound is the best conductor of electric current?
(1) C₃H₇OH (3) MgSO₄
(2) C₆H₁₂O₆ (4) K₂SO₄
27 What is the color of brom cresol green indicator in a solution with a pH value of 2.0?
(1) blue (3) red
(2) green (4) yellow

28 Which formula can represent hydrogen ions in an aqueous solution?
(1) OH\(^-\)(aq) (3) H\(_3\)O\(^+\)(aq)
(2) Hg\(_2\)\(^{2+}\)(aq) (4) NH\(_4\)\(^+\)(aq)

29 In which reaction is an atom of one element converted into an atom of another element?
(1) combustion (2) fermentation
(3) oxidation-reduction (4) transmutation

30 In which type of nuclear reaction do nuclei combine to form a nucleus with a greater mass?
(1) alpha decay (3) fusion
(2) beta decay (4) fission
31. The bright-line spectra produced by four elements are represented in the diagram below.

Wavelength (nm)

<table>
<thead>
<tr>
<th>Element A</th>
<th>Element D</th>
<th>Element X</th>
<th>Element Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength (nm)</td>
<td>Wavelength (nm)</td>
<td>Wavelength (nm)</td>
<td>Wavelength (nm)</td>
</tr>
</tbody>
</table>

Question 31 is continued on the next page.
Given the bright-line spectrum of a mixture formed from two of these elements:

Which elements are present in this mixture?

(1) A and X
(2) A and Z
(3) D and X
(4) D and Z

32 Which electron configuration represents the electrons in an atom of sulfur in an excited state?

(1) 2 – 8 – 6
(2) 2 – 7 – 7
(3) 2 – 8 – 7
(4) 2 – 7 – 8

33 Which notations represent atoms that have the same number of protons but a different number of neutrons?

(1) H-3 and He-3
(2) S-32 and S-32
(3) Cl-35 and Cl-37
(4) Ga-70 and Ge-73
34 What is the chemical name of the compound NH₄SCN?
 (1) ammonium thiocyanate
 (2) ammonium cyanide
 (3) nitrogen hydrogen cyanide
 (4) nitrogen hydrogen sulfate

35 Which equation represents a conservation of atoms?
 (1) 2Fe + 2O₂ → Fe₂O₃
 (2) 2Fe + 3O₂ → Fe₂O₃
 (3) 4Fe + 2O₂ → 2Fe₂O₃
 (4) 4Fe + 3O₂ → 2Fe₂O₃

36 Which compound has covalent bonds?
 (1) H₂O
 (2) Li₂O
 (3) Na₂O
 (4) K₂O

37 Which particle diagram represents a sample of oxygen gas at STP?

<table>
<thead>
<tr>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>● = one atom of oxygen</td>
</tr>
</tbody>
</table>

(1)
(2)
(3)
(4)
38. At which temperature and pressure will a sample of neon gas behave most like an ideal gas?
 (1) 300. K and 2.0 atm (3) 500. K and 2.0 atm
 (2) 300. K and 4.0 atm (4) 500. K and 4.0 atm

39. What is the molarity of 2.0 liters of an aqueous solution that contains 0.50 mole of potassium iodide, KI?
 (1) 1.0 M (3) 0.25 M
 (2) 2.0 M (4) 0.50 M

40. The volumes of four samples of gaseous compounds at 298 K and 101.3 kPa are shown in the table below.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Compounds</th>
<th>Volume (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NH₃(g)</td>
<td>44.0</td>
</tr>
<tr>
<td>2</td>
<td>CO₂(g)</td>
<td>33.0</td>
</tr>
<tr>
<td>3</td>
<td>HF(g)</td>
<td>44.0</td>
</tr>
<tr>
<td>4</td>
<td>CH₄(g)</td>
<td>22.0</td>
</tr>
</tbody>
</table>

Which two samples contain the same number of molecules?
 (1) 1 and 2 (3) 2 and 3
 (2) 1 and 3 (4) 2 and 4

41. Hydrochloric acid reacts faster with powdered zinc than with an equal mass of zinc strips because the greater surface area of the powdered zinc
 (1) decreases the frequency of particle collisions
 (2) decreases the activation energy of the reaction
 (3) increases the frequency of particle collisions
 (4) increases the activation energy of the reaction

42. Given the equation representing a system at equilibrium in a sealed, rigid container:
 \[2\text{HI}(g) \rightleftharpoons \text{H}_2(g) + \text{I}_2(g) + \text{energy} \]

Increasing the temperature of the system causes the concentration of
 (1) HI to increase
 (2) H₂ to increase
 (3) HI to remain constant
 (4) H₂ to remain constant
43 Based on Table I, which equation represents a reaction with the greatest difference between the potential energy of the products and the potential energy of the reactants?

(1) \(4\text{Al}(s) + 3\text{O}_2(g) \rightarrow 2\text{Al}_2\text{O}_3(s)\)

(2) \(2\text{H}_2(g) + \text{O}_2(g) \rightarrow 2\text{H}_2\text{O}(\ell)\)

(3) \(\text{C}_3\text{H}_8(g) + 5\text{O}_2(g) \rightarrow 3\text{CO}_2(g) + 4\text{H}_2\text{O}(\ell)\)

(4) \(\text{C}_6\text{H}_{12}\text{O}_6(s) + 6\text{O}_2(g) \rightarrow 6\text{CO}_2(g) + 6\text{H}_2\text{O}(\ell)\)

44 Which phase change results in an increase in entropy?

(1) \(\text{I}_2(g) \rightarrow \text{I}_2(s)\)

(2) \(\text{CH}_4(g) \rightarrow \text{CH}_4(\ell)\)

(3) \(\text{Br}_2(\ell) \rightarrow \text{Br}_2(g)\)

(4) \(\text{H}_2\text{O}(\ell) \rightarrow \text{H}_2\text{O}(s)\)

45 Given the formula for a compound:

\[
\begin{array}{cccccc}
\text{H} & \text{H} & \text{H} & \text{O} & \text{H} \\
\mid & \mid & \mid & \mid & \\
\text{H} & -\text{C} & -\text{C} & -\text{C} & -\text{O} & -\text{C} & -\text{H} \\
\mid & \mid & \mid & \mid & \\
\text{H} & \text{H} & \text{H} & \text{H} & \\
\end{array}
\]

What is the name of this compound?

(1) methyl butanoate
(2) methyl butyl ether
(3) pentanone
(4) pentanoic acid

46 Given the equation representing a reaction:

\[2\text{Ca}(s) + \text{O}_2(g) \rightarrow 2\text{CaO}(s)\]

During this reaction, each element changes in

(1) atomic number
(2) oxidation number
(3) number of protons per atom
(4) number of neutrons per atom

47 Which equation represents a spontaneous reaction?

(1) \(\text{Ca} + \text{Ba}^{2+} \rightarrow \text{Ca}^{2+} + \text{Ba}\)

(2) \(\text{Co} + \text{Zn}^{2+} \rightarrow \text{Co}^{2+} + \text{Zn}\)

(3) \(\text{Fe} + \text{Mg}^{2+} \rightarrow \text{Fe}^{2+} + \text{Mg}\)

(4) \(\text{Mn} + \text{Ni}^{2+} \rightarrow \text{Mn}^{2+} + \text{Ni}\)

48 Which equation represents a neutralization reaction?

(1) \(6\text{HClO} \rightarrow 4\text{HCl} + 2\text{HClO}_3\)

(2) \(\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O}\)

(3) \(\text{Ca(OH)}_2 + \text{H}_2\text{SO}_4 \rightarrow \text{CaSO}_4 + 2\text{H}_2\text{O}\)

(4) \(\text{Ba(OH)}_2 + \text{Cu(NO}_3)_2 \rightarrow \text{Ba(NO}_3)_2 + \text{Cu(OH)}_2\)
49 Which radioisotope requires long-term storage as the method of disposal, to protect living things from radiation exposure over time?

(1) Pu-239
(2) Fr-220
(3) Fe-53
(4) P-32

50 Given the equation representing a reaction:

\[
\begin{align*}
^{235}_{92}\text{U} + ^1_0\text{n} &\rightarrow ^{140}_{56}\text{Ba} + ^{93}_{36}\text{Kr} + ^3_0\text{n} + \text{energy} \\
\text{total mass equals} & \ 236.053 \text{ u} \\
\text{total mass equals} & \ 235.868 \text{ u}
\end{align*}
\]

Which statement explains the energy term in this reaction?

(1) Mass is gained due to the conversion of mass to energy.
(2) Mass is gained due to the conversion of energy to mass.
(3) Mass is lost due to the conversion of mass to energy.
(4) Mass is lost due to the conversion of energy to mass.
Part B–2

Answer all questions in this part.

Directions (51-65): Record your answers in the spaces provided in your answer booklet. Some questions may require the use of the 2011 Edition Reference Tables for Physical Setting/Chemistry.

Base your answers to questions 51 through 53 on the information below and on your knowledge of chemistry.

The only naturally occurring isotopes of nitrogen are N-14 and N-15.

51 State the number of protons in an atom of N-15. [1]

52 State the number of electrons in each shell of a N-14 atom in the ground state. [1]

53 Based on the atomic mass of the element nitrogen on the Periodic Table, compare the relative abundances of the naturally occurring isotopes of nitrogen. [1]
Base your answers to questions 54 through 56 on the information below and on your knowledge of chemistry.

The melting points and boiling points of five substances at standard pressure are listed on the table below.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Melting Point (K)</th>
<th>Boiling Point (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl</td>
<td>159</td>
<td>188</td>
</tr>
<tr>
<td>NO</td>
<td>109</td>
<td>121</td>
</tr>
<tr>
<td>F₂</td>
<td>53</td>
<td>85</td>
</tr>
<tr>
<td>Br₂</td>
<td>266</td>
<td>332</td>
</tr>
<tr>
<td>I₂</td>
<td>387</td>
<td>457</td>
</tr>
</tbody>
</table>

54 Identify the substance in this table that is a liquid at STP. [1]

55 State, in terms of the strength of intermolecular forces, why I₂ has a higher boiling point than F₂. [1]

56 State what happens to the potential energy of a sample of NO(ℓ) at 121 K as it changes to NO(g) at constant temperature and standard pressure. [1]
Base your answers to questions 57 through 59 on the information below and on your knowledge of chemistry.

A 100-gram sample of liquid water is heated from 20.0°C to 50.0°C. Enough KClO₃(s) is dissolved in the sample of water at 50.0°C to form a saturated solution.

57 Using the information on Table B, determine the amount of heat absorbed by the water when the water is heated from 20.0°C to 50.0°C. [1]

58 Based on Table H, determine the vapor pressure of the water sample at its final temperature. [1]

59 Based on Table G, determine the mass of KClO₃(s) that must dissolve to make a saturated solution in 100. g of H₂O at 50.0°C. [1]
60 Identify the subatomic particles that flow through the wires as the cell operates. [1]

61 State the purpose of the salt bridge in completing the circuit in this cell. [1]

62 Write a balanced equation for the half-reaction that occurs in the copper half-cell when the cell operates. [1]
A NaOH(aq) solution with a pH value of 13 is used to determine the molarity of a HCl(aq) solution. A 10.0-mL sample of the HCl(aq) is exactly neutralized by 16.0 mL of 0.100 M NaOH(aq). During this laboratory activity, appropriate safety equipment was used and safety procedures were followed.

63 Determine the molarity of the HCl(aq) sample, using the titration data. [1]

64 Compare the hydronium ion concentration to the hydroxide ion concentration when the HCl(aq) solution is exactly neutralized by the NaOH(aq) solution. [1]

65 Determine the pH value of a solution that has a $H^+(aq)$ ion concentration 10 times greater than the original NaOH(aq) solution. [1]
Part C

Answer all questions in this part.

Directions (66-85): Record your answers in the spaces provided in your answer booklet. Some questions may require the use of the 2011 Edition Reference Tables for Physical Setting/Chemistry.

Base your answers to questions 66 through 68 on the information below and on your knowledge of chemistry.

A hydrate is a compound that has water molecules within its crystal structure. Magnesium sulfate heptahydrate, MgSO₄•7H₂O, is a hydrated form of magnesium sulfate. The hydrated compound has 7 moles of H₂O for each mole of MgSO₄. When 5.06 grams of MgSO₄•7H₂O are heated to at least 300.°C in a crucible by using a laboratory burner, the water molecules are released. The sample was heated repeatedly, until the remaining MgSO₄ had a constant mass of 2.47 grams. During this laboratory activity, appropriate safety equipment was used and safety procedures were followed.

66 Explain why the sample in the crucible was heated repeatedly until the sample had a constant mass. [1]

67 Using the lab data, show a numerical setup for calculating the percent composition by mass of water in the hydrated compound. [1]

68 Determine the gram-formula mass of the magnesium sulfate heptahydrate. [1]
Solid sodium chloride, also known as table salt, can be obtained by the solar evaporation of seawater and from underground mining. Liquid sodium chloride can be decomposed by electrolysis to produce liquid sodium and chlorine gas, as represented by the equation below.

$$2\text{NaCl(ℓ)} \rightarrow 2\text{Na(ℓ)} + \text{Cl}_2(\text{g})$$

69 State, in terms of electrons, why the radius of a Na^+ ion in the table salt is smaller than the radius of a Na atom. [1]

70 Identify the noble gas that has atoms with the same number of electrons as a chloride ion in table salt. [1]

71 In the space in your answer booklet, draw a Lewis electron-dot diagram of a Cl_2 molecule. [1]
Base your answers to questions 72 through 75 on the information below and on your knowledge of chemistry.

The enclosed cabin of a submarine has a volume of 2.4×10^5 liters, a temperature of 312 K, and a pressure of 116 kPa. As people in the cabin breathe, carbon dioxide gas, CO$_2$(g), can build up to unsafe levels. Air in the cabin becomes unsafe to breathe when the mass of CO$_2$(g) in this cabin exceeds 2156 grams.

72 State what happens to the average kinetic energy of the gas molecules if the cabin temperature decreases. [1]

73 Show a numerical setup for calculating the pressure in the submarine cabin if the cabin temperature changes to 293 K. [1]

74 Determine the number of moles of CO$_2$(g) in the submarine cabin at which the air becomes unsafe to breathe. The gram-formula mass of CO$_2$ is 44.0 g/mol. [1]

75 Convert the original air pressure in the cabin of the submarine to atmospheres. [1]
Base your answers to questions 76 through 78 on the information below and on your knowledge of chemistry.

Automobile catalytic converters use a platinum catalyst to reduce air pollution by changing emissions such as carbon monoxide, \(\text{CO}(g) \), into carbon dioxide, \(\text{CO}_2(g) \). The uncatalyzed reaction is represented by the balanced equation below.

\[
2\text{CO}(g) + \text{O}_2(g) \rightarrow 2\text{CO}_2(g) + \text{heat}
\]

76 On the labeled axes in your answer booklet, draw a potential energy diagram for the reaction represented by this equation. [1]

77 Compare the activation energy of the catalyzed reaction to the activation energy of the uncatalyzed reaction. [1]

78 Determine the number of moles of \(\text{O}_2(g) \) required to completely react with 28 moles of \(\text{CO}(g) \) during this reaction. [1]
The solvent 2-chloropropane can be made when chemists react propene with hydrogen chloride, as shown in the equation below.

\[
\begin{align*}
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{C} \quad \text{= C} \quad \text{H} + \text{HCl} \quad \rightarrow \quad \text{H} & \quad \text{C} \quad \text{C} \quad \text{C} \quad \text{H} \\
\text{H} & \quad \text{H}
\end{align*}
\]

79 Identify the element in propene that is in all organic compounds. [1]

80 Explain, in terms of chemical bonds, why the hydrocarbon reactant is classified as unsaturated. [1]

81 Write the general formula for the homologous series to which propene belongs. [1]
Radioactive emissions can be detected by a Geiger counter. When radioactive emissions enter the Geiger counter probe, which contains a noble gas such as argon or helium, some of the atoms are ionized. The ionized gas allows for a brief electric current. The current causes the speaker to make a clicking sound. To make sure that the Geiger counter is measuring radiation properly, the device is tested using the radioisotope Cs-137.

To detect gamma radiation, an aluminum shield can be placed over the probe window, to keep alpha and beta radiation from entering the probe. A diagram that represents the Geiger counter is shown below.
Questions 82-85 continued

82 Compare the first ionization energy of argon to the first ionization energy of helium. [1]

83 State evidence from the passage that gamma radiation has greater penetrating power than alpha or beta radiation. [1]

84 Determine the time required for a sample of cesium-137 to decay until only $\frac{1}{8}$ of the original sample remains unchanged. [1]

85 Complete the nuclear equation in your answer booklet for the decay of Cs-137 by writing a notation for the missing product. [1]