Part I

Answer all 56 questions in this part.

Directions (1–56): For each statement or question, select the word or expression that, of those given, best completes the statement or answers the question. Record your answer on the separate answer sheet in accordance with the directions on the front page of this booklet.

1 The heat absorbed when ice melts can be measured in a unit called a
(1) torr (2) degree (3) mole (4) calorie

2 Which substance is a binary compound?
(1) ammonia (2) argon (3) glucose (4) glycerol

3 Which sample of matter is a mixture?
(1) H₂O(s) (2) H₂O(g) (3) NaCl(ℓ) (4) NaCl(aq)

4 Which graph best represents the variation in the vapor pressure of water as temperature changes?

5 Which atom in the ground state has five electrons in its outer level and ten electrons in its kernel?
(1) C (2) Cl (3) Si (4) P

6 Which type of radiation continues in a straight line when passed through an electric field?
(1) alpha (2) beta (3) gamma (4) proton

7 The atomic mass unit is defined as exactly \(\frac{1}{12} \) the mass of an atom of
(1) \(^{12}_6\text{C} \) (2) \(^{14}_6\text{C} \) (3) \(^{24}_{12}\text{Mg} \) (4) \(^{26}_{12}\text{Mg} \)

8 When an atom loses an electron, the atom becomes an ion that is
(1) positively charged and gains a small amount of mass
(2) positively charged and loses a small amount of mass
(3) negatively charged and gains a small amount of mass
(4) negatively charged and loses a small amount of mass

9 The nucleus of which atom contains 48 neutrons?
(1) \(^{32}_{16}\text{S} \) (2) \(^{48}_{22}\text{Ti} \) (3) \(^{85}_{37}\text{Rb} \) (4) \(^{112}_{48}\text{Cd} \)

10 Experiments performed to reveal the structure of atoms led scientists to conclude that an atom’s
(1) positive charge is evenly distributed throughout its volume
(2) negative charge is mainly concentrated in its nucleus
(3) mass is evenly distributed throughout its volume
(4) volume is mainly unoccupied
11 Given the unbalanced equation:

\[\text{Al(s)} + _\text{O}_2(g) \rightarrow _\text{Al}_2\text{O}_3(s) \]

When this equation is correctly balanced using *smallest* whole numbers, what is the coefficient of \(\text{O}_2(g) \)?

(1) 6 (2) 2 (3) 3 (4) 4

12 Which pair of atoms is held together by a covalent bond?

(1) HCl (2) LiCl (3) NaCl (4) KCl

13 The formula \(\text{H}_2\text{O}_2 \) is an example of

(1) a molecular formula (2) an empirical formula (3) an ionic formula (4) an organic formula

14 What happens when \(\text{NaCl(s)} \) is dissolved in water?

(1) \(\text{Cl}^- \) ions are attracted to the oxygen atoms of water molecules.
(2) \(\text{Na}^+ \) ions are attracted to the oxygen atoms of water molecules.
(3) \(\text{Cl}^- \) ions are repelled by the hydrogen atoms of water molecules.
(4) \(\text{Na}^+ \) ions are repelled by the oxygen atoms of water molecules.

15 Which molecule has an asymmetrical shape?

(1) \(\text{N}_2 \) (2) \(\text{NH}_3 \) (3) \(\text{Cl}_2 \) (4) \(\text{CCl}_4 \)

16 The forces between atoms that create chemical bonds are the result of interactions between

(1) nuclei (2) electrons (3) protons and electrons (4) protons and nuclei

17 Which Group 16 element undergoes natural radioactive disintegration?

(1) Po (2) S (3) Se (4) Te

18 Pure silicon is chemically classified as a metalloid because silicon

(1) is malleable and ductile
(2) is an excellent conductor of heat and electricity
(3) exhibits hydrogen bonding
(4) exhibits metallic and nonmetallic properties

19 In which group of elements do most atoms have completely filled \(s \) and \(p \) valence sublevels?

(1) halogens (2) noble gases (3) alkali metals (4) alkaline earth metals

20 Which ion has the largest radius?

(1) \(\text{Na}^+ \) (2) \(\text{Mg}^{2+} \) (3) \(\text{K}^+ \) (4) \(\text{Ca}^{2+} \)

21 An aqueous solution of \(\text{XCl}_2 \) contains colored ions. Element \(\text{X} \) could be

(1) Ba (2) Ca (3) Ni (4) Bi

22 Which properties are most common in nonmetals?

(1) low ionization energy and low electronegativity
(2) low ionization energy and high electronegativity
(3) high ionization energy and low electronegativity
(4) high ionization energy and high electronegativity

23 One mole of \(\text{O}_2 \) has approximately the same mass as one mole of

(1) \(\text{CH}_4 \) (2) \(\text{S} \) (3) \(\text{LiH} \) (4) \(\text{Cl}_2 \)
24. Based on Reference Table E, which compound could form a concentrated solution?
 (1) AgBr (3) Ag₂CO₃
 (2) AgCl (4) AgNO₃

25. A 2.00-liter sample of a gas has a mass of 1.80 grams at STP. What is the density, in grams per liter, of this gas at STP?
 (1) 0.900 (3) 11.2
 (2) 1.80 (4) 22.4

26. What is the total number of neon atoms contained in 20.2 grams of neon gas?
 (1) 1.01 × 10²⁴ (3) 3.01 × 10²³
 (2) 2.02 × 10²⁴ (4) 6.02 × 10²³

27. What is the total number of moles of oxygen atoms in 1 mole of N₂O₃?
 (1) 1 (3) 3
 (2) 2 (4) 5

28. Which 1.0-mole sample at 1 atm has particles with the greatest entropy?
 (1) CH₄(g) at 25°C (3) CH₄(g) at 300 K
 (2) H₂S(g) at 40°C (4) H₂S(g) at 310 K

29. A 1.0-gram sample of powdered Zn reacts faster with HCl than a single 1.0-gram piece of Zn because the surface atoms in powdered Zn have
 (1) higher average kinetic energy
 (2) lower average kinetic energy
 (3) more contact with the H⁺ ions in the acid
 (4) less contact with the H⁺ ions in the acid

30. In a reversible reaction, chemical equilibrium is attained when the
 (1) rate of the forward reaction is greater than the rate of the reverse reaction
 (2) rate of the reverse reaction is greater than the rate of the forward reaction
 (3) concentration of the reactants reaches zero
 (4) concentration of the products remains constant

31. Which statement correctly describes this reaction?
 (1) It is endothermic and energy is absorbed.
 (2) It is endothermic and energy is released.
 (3) It is exothermic and energy is absorbed.
 (4) It is exothermic and energy is released.

32. Which numbered interval will change with the addition of a catalyst to the system?
 (1) 1 (3) 3
 (2) 2 (4) 4

33. Carbon dioxide gas is most soluble in water under conditions of
 (1) high pressure and low temperature
 (2) high pressure and high temperature
 (3) low pressure and low temperature
 (4) low pressure and high temperature

34. A solution contains 130 grams of KNO₃ dissolved in 100 grams of water. When 3 more grams of KNO₃ is added, none of it dissolves, nor do any additional crystals appear. Based on Reference Table D, the temperature of the solution is closest to
 (1) 65°C (3) 70°C
 (2) 68°C (4) 72°C
35 If equal volumes of 0.1 M NaOH and 0.1 M HCl are mixed, the resulting solution will contain a salt and
(1) HCl (3) H₂O
(2) NaOH (4) NaCl

36 According to Reference Table L, which of the following 1.0 M acid solutions has the greatest [H₃O⁺] at 1 atmosphere and 298 K?
(1) HNO₃ (3) H₃PO₄
(2) HF (4) HNO₂

37 The [H₃O⁺] of a solution is 1 × 10⁻⁸. This solution has a pH of
(1) 6, which is acidic (3) 6, which is basic
(2) 8, which is basic (4) 8, which is acidic

38 Which of the following is the strongest Brönsted-Lowry base?
(1) I⁻ (3) Cl⁻
(2) Br⁻ (4) F⁻

39 In the reaction NH₃ + HCl → NH₄⁺ + Cl⁻, the NH₃ acts as
(1) a Brönsted acid, only
(2) a Brönsted base, only
(3) both a Brönsted acid and a Brönsted base
(4) neither a Brönsted acid nor a Brönsted base

40 Which species is amphoteric (amphiprotic)?
(1) H₂ (3) HSO₄⁻
(2) H₂SO₄ (4) SO₄²⁻

41 When a redox reaction occurs, there must be a transfer of
(1) electrons (3) protons
(2) neutrons (4) ions

42 What is the oxidation number of carbon in NaHCO₃?
(1) –2 (3) –4
(2) +2 (4) +4

43 A redox reaction is set up so that both half-reactions take place in separate beakers that are connected by a salt bridge and an external conductor. A path for the transfer of ions is provided by the
(1) anode
(2) cathode
(3) salt bridge
(4) external conductor

44 An oxidation half-reaction always involves the
(1) gain of electrons and a decrease in the oxidation number
(2) gain of electrons and an increase in the oxidation number
(3) loss of electrons and a decrease in the oxidation number
(4) loss of electrons and an increase in the oxidation number

45 Given the electrochemical cell reaction:
\[\text{Zn(s)} + \text{Ni}^{2+}(aq) \rightarrow \text{Zn}^{2+}(aq) + \text{Ni(s)} \]
Which species is the reducing agent?
(1) Zn (3) Zn²⁺
(2) Ni²⁺ (4) Ni

46 Which equation represents an oxidation-reduction reaction?
(1) HCl + KOH → KCl + H₂O
(2) 4HCl + MnO₂ → MnCl₂ + 2H₂O + Cl₂
(3) 2HCl + CaCO₃ → CaCl₂ + H₂O + CO₂
(4) 2HCl + FeS → FeCl₂ + H₂S

47 An example of a synthetic polymer is
(1) starch (3) protein
(2) cellulose (4) nylon

48 What are the two main products of a fermentation reaction?
(1) ethanol and carbon dioxide
(2) ethanol and water
(3) sugar and carbon dioxide
(4) sugar and water
49 Which structural formula represents a saturated hydrocarbon?

(1) \[\text{H} - \text{C} - \text{C} - \text{H} \]
(3) \[\text{H} - \text{C} = \text{C} - \text{H} \]

(2) \[\text{Cl} - \text{C} - \text{C} - \text{Cl} \]
(4) \[\text{Cl} - \text{C} = \text{C} - \text{Cl} \]

50 A compound with the formula \(\text{CH}_3\text{CH}_2\text{OH} \) is classified as an
(1) alkane (3) alcohol
(2) alkene (4) acid

51 In general, which property do organic compounds share?
(1) high melting point
(2) high electrical conductivity
(3) readily soluble in water
(4) slow reaction rate

Note that questions 52 through 56 have only three choices.

52 As an acid solution is added to neutralize a base solution, the \(\text{OH}^- \) concentration of the base solution
(1) decreases
(2) increases
(3) remains the same

53 A cylinder with a tightly fitted piston is shown in the diagram below.

As the piston moves downward, the number of molecules of air in the cylinder
(1) decreases
(2) increases
(3) remains the same

54 As the noble gases are considered in order of increasing atomic number, the van der Waals forces between the atoms in a given sample of each of these gases
(1) decrease
(2) increase
(3) remains the same

55 Within Period 2 of the Periodic Table, as the atomic number increases, the atomic radius generally
(1) decreases
(2) increases
(3) remains the same

56 As an electron moves from a \(3s \) orbital to a \(2s \) orbital, the energy of the atom
(1) decreases
(2) increases
(3) remains the same
Group 1 — Matter and Energy

57 What is the boiling point of water when the atmospheric pressure exerted on the water is 525.8 mmHg?
 (1) 50°C (3) 100°C
 (2) 90°C (4) 110°C

58 Which phase change is exothermic?
 (1) solid to liquid (3) liquid to solid
 (2) solid to gas (4) liquid to gas

59 What happens when two oxygen atoms combine to form a molecule of oxygen?
 (1) Chemical bonds are broken and energy is absorbed.
 (2) Chemical bonds are broken and energy is released.
 (3) Chemical bonds are formed and energy is absorbed.
 (4) Chemical bonds are formed and energy is released.

60 The average kinetic energy of water molecules increases when
 (1) H₂O(s) changes to H₂O(ℓ) at 0°C
 (2) H₂O(ℓ) changes to H₂O(s) at 0°C
 (3) H₂O(ℓ) at 10°C changes to H₂O(ℓ) at 20°C
 (4) H₂O(ℓ) at 20°C changes to H₂O(ℓ) at 10°C

61 The heat energy required to change a unit mass of a solid into a liquid at constant temperature is called
 (1) heat of vaporization (3) heat of solution
 (2) heat of formation (4) heat of fusion

Group 2 — Atomic Structure

62 The mass of a proton is approximately equal to the total mass of 1,836
 (1) electrons (3) helium nuclei
 (2) neutrons (4) alpha particles

63 A carbon-14 atom spontaneously decayed to form a nitrogen-14 atom. This change took place because
 (1) a transmutation occurred without particle emission
 (2) a transmutation occurred with particle emission
 (3) nitrogen-14 has an unstable nucleus
 (4) carbon-14 has a stable nucleus

64 What is the total number of sublevels that contain electrons in the third principal energy level of a nickel atom in the ground state?
 (1) 1 (3) 3
 (2) 2 (4) 4

65 What is the nuclear charge of an iron atom?
 (1) +26 (3) +56
 (2) +30 (4) +82

66 Which electron configuration represents an element with the highest first ionization energy?
 (1) 1s²2s¹ (3) 1s²2s²2p⁶3s¹
 (2) 1s²2s² (4) 1s²2s²2p⁶3s²

Part II

This part consists of twelve groups, each containing five questions. Each group tests a major area of the course. Choose seven of these twelve groups. Be sure that you answer all five questions in each group chosen. Record the answers to these questions on the separate answer sheet in accordance with the directions on the front page of this booklet.
Group 3 — Bonding
If you choose this group, be sure to answer questions 67–71.

67 Which type of bond is formed when an atom of potassium transfers an electron to a bromine atom?
 (1) metallic (3) nonpolar covalent
 (2) ionic (4) polar covalent

68 What is the simplest ratio of nitrogen to oxygen atoms in the compound nitrogen (IV) oxide?
 (1) 1:2 (3) 2:4
 (2) 2:1 (4) 4:2

69 A diamond crystal differs from an ice crystal in that a diamond crystal
 (1) crushes easily
 (2) conducts electricity
 (3) contains no discrete particles
 (4) melts at a temperature below 0°C

70 When compared to H₂S, H₂O has a higher boiling point because H₂O contains stronger
 (1) metallic bonds (3) ionic bonds
 (2) covalent bonds (4) hydrogen bonds

71 Which quantity of particles is correctly represented by the formula H₂SO₄²⁻?
 (1) 1.0 mole of ions
 (2) 1.0 mole of molecules
 (3) 6.0 × 10²³ ions
 (4) 6.0 × 10²³ atoms

Group 4 — Periodic Table
If you choose this group, be sure to answer questions 72–76.

72 An element with a partially filled d sublevel in the ground state is classified as
 (1) a halogen
 (2) a transition metal
 (3) an alkali metal
 (4) an alkaline earth metal

73 Which statement describes the elements in Period 3?
 (1) Each successive element has a greater atomic radius.
 (2) Each successive element has a lower electronegativity.
 (3) All elements have similar chemical properties.
 (4) All elements have valence electrons in the same principal energy level.

74 Which element in Period 4 is classified as an active nonmetal?
 (1) Ga (3) Br
 (2) Ge (4) Kr

75 Which of the following Group 15 elements has the most metallic properties?
 (1) Bi (3) Sb
 (2) P (4) N

76 Which characteristic describes most nonmetals in the solid phase?
 (1) good conductors of electricity
 (2) good conductors of heat
 (3) malleable
 (4) brittle
Group 5 — Mathematics of Chemistry
If you choose this group, be sure to answer questions 77–81.

77 What is the total number of nitrogen atoms in 0.25 mole of NO₂ gas?
(1) 1.5 × 10²³ (3) 3.0 × 10²³
(2) 6.0 × 10²³ (4) 1.2 × 10²⁴

78 As a solute is added to a solvent, what happens to the freezing point and the boiling point of the solution?
(1) The freezing point decreases and the boiling point decreases.
(2) The freezing point decreases and the boiling point increases.
(3) The freezing point increases and the boiling point decreases.
(4) The freezing point increases and the boiling point increases.

79 What is the volume, in liters, of 576 grams of SO₂ gas at STP?
(1) 101 (3) 216
(2) 202 (4) 788

80 A 2.0-molal sugar solution has approximately the same freezing point as a 1.0-molal solution of
(1) CaCl₂ (3) C₂H₅OH
(2) CH₃COOH (4) NaCl

81 A compound contains 46.7% nitrogen and 53.3% oxygen by mass. What is the empirical formula of the compound?
(1) NO (3) N₂O₃
(2) N₂O (4) N₂O₅

Group 6 — Kinetics and Equilibrium
If you choose this group, be sure to answer questions 82–86.

82 Given the Kᵢₛₚ expression: \(K_{ᵢₛₚ} = [A^{3+}]^2 [B^{2-}]^3 \)
Which reaction is represented by the expression?
(1) \(A_2B_3(s) ⇌ 3A^{3+}(aq) + 2B^{2-}(aq) \)
(2) \(A_2B_3(s) ⇌ 2A^{3+}(aq) + 3B^{2-}(aq) \)
(3) \(A_3B_2(s) ⇌ 3A^{3+}(aq) + 2B^{2-}(aq) \)
(4) \(A_3B_2(s) ⇌ 2A^{3+}(aq) + 3B^{2-}(aq) \)

83 Given the reaction at equilibrium:
\(X + Y ⇌ 2Z + \text{heat} \)
The concentration of the product could be increased by
(1) adding a catalyst
(2) adding more heat to the system
(3) increasing the concentration of Y
(4) decreasing the concentration of X

84 Based on Reference Table M, which of the following compounds is least soluble in water?
(1) AgCl (3) Ag₂CrO₄
(2) PbCl₂ (4) PbCrO₄

85 Given the system at equilibrium:
\(\text{PbCO}_3(s) ⇌ \text{Pb}^{2+}(aq) + \text{CO}_3^{2-}(aq) \)
How will the addition of Na₂CO₃(aq) affect \([\text{Pb}^{2+}]\)(aq) and the mass of PbCO₃(s)?
(1) \([\text{Pb}^{2+}]\)(aq) will decrease and the mass of PbCO₃(s) will decrease.
(2) \([\text{Pb}^{2+}]\)(aq) will decrease and the mass of PbCO₃(s) will increase.
(3) \([\text{Pb}^{2+}]\)(aq) will increase and the mass of PbCO₃(s) will decrease.
(4) \([\text{Pb}^{2+}]\)(aq) will increase and the mass of PbCO₃(s) will increase.

86 Which condition is necessary for a chemical reaction to occur spontaneously?
(1) \(ΔS\) must be negative.
(2) \(ΔS\) must be positive.
(3) \(ΔG\) must be negative.
(4) \(ΔG\) must be positive.
Group 7 — Acids and Bases
If you choose this group, be sure to answer questions 87–91.

87 The pH of a solution that is formed by the neutralization of 1.0 M H₂SO₄ and 1.0 M KOH is closest to
(1) 1 (3) 10
(2) 7 (4) 4

88 Both HNO₃(aq) and CH₃COOH(aq) can be classified as
(1) Arrhenius acids that turn blue litmus red
(2) Arrhenius bases that turn blue litmus red
(3) Arrhenius acids that turn red litmus blue
(4) Arrhenius bases that turn red litmus blue

89 What is the molarity of a nitric acid solution, HNO₃, if 20.0 mL of the solution is needed to exactly neutralize 10.0 mL of a 1.67 M NaOH solution?
(1) 3.34 M (3) 0.835 M
(2) 1.67 M (4) 0.334 M

90 In the reaction NH₃ + H₂O ⇌ NH₄⁺ + OH⁻, a conjugate acid-base pair is
(1) NH₃ and H₂O (3) H₂O and NH₄⁺
(2) NH₃ and OH⁻ (4) H₂O and OH⁻

91 Which compound is classified as an electrolyte?
(1) C₆H₁₂O₆ (3) CH₃OH
(2) C₁₂H₂₂O₁₁ (4) Ca(OH)₂

Group 8 — Redox and Electrochemistry
If you choose this group, be sure to answer questions 92–96.

92 Given the reaction:
___Cl₂(g) + ___Fe²⁺(aq) → ___Fe³⁺(aq) + ___Cl⁻(aq)
When the equation is correctly balanced using smallest whole numbers, the coefficient of Cl⁻(aq) will be
(1) 1 (3) 6
(2) 2 (4) 7

93 Given the reaction:
Mg + Fe²⁺ → Mg²⁺ + Fe
What is the net cell potential (E°) for the overall reaction?
(1) 0.45 V (3) 2.37 V
(2) 1.92 V (4) 2.82 V

94 According to Reference Table N, what is the strongest oxidizing agent?
(1) F₂(g) (3) Li⁺
(2) F⁻ (4) Li(s)

95 A metal object is to be electroplated with silver. Which set of electrodes should be used?
(1) a silver anode and a metal object as the cathode
(2) a platinum anode and a metal object as the cathode
(3) a silver cathode and a metal object as the anode
(4) a platinum cathode and a metal object as the anode

96 In an electrolytic cell, the anode is always the
(1) negative electrode, where reduction occurs
(2) negative electrode, where oxidation occurs
(3) positive electrode, where reduction occurs
(4) positive electrode, where oxidation occurs
97 Which structural formula correctly represents an organic compound?

(1) \(\begin{align*} & \text{H} \\
& \text{C} = \text{C} = \text{C} - \text{C} - \text{H} \\
& \text{H} \end{align*} \)

(2) \(\begin{align*} & \text{H} - \text{C} - \text{C} = \text{C} = \text{C} - \text{H} \\
& \text{H} \end{align*} \)

(3) \(\begin{align*} & \text{H} - \text{C} - \text{C} = \text{C} = \text{C} - \text{H} \\
& \text{H} \end{align*} \)

(4) \(\begin{align*} & \text{H} - \text{C} = \text{C} - \text{C} = \text{C} - \text{H} \end{align*} \)

98 Which type of bond is formed between the carbon atom and the oxygen atom in \(\text{CH}_3\text{OH} \)?

(1) ionic
(2) electrovalent
(3) polar covalent
(4) nonpolar covalent

99 When hydrocarbons burn completely in an excess of oxygen, the products are

(1) carbon monoxide and water
(2) carbon dioxide and water
(3) carbon monoxide and carbon dioxide
(4) carbon dioxide and carbon

100 Molecules of propene combine in a chemical reaction to produce a single molecule. This reaction is called

(1) substitution
(2) saponification
(3) polymerization
(4) esterification

101 Which organic compounds are secondary alcohols?

(1) \(\begin{align*} & \text{H} - \text{C} = \text{C} - \text{C} = \text{C} - \text{H} \\
& \text{H} \end{align*} \) and \(\begin{align*} & \text{H} - \text{C} = \text{C} - \text{C} = \text{C} - \text{OH} \\
& \text{H} \end{align*} \)

(2) \(\begin{align*} & \text{H} - \text{C} = \text{C} - \text{C} = \text{C} - \text{H} \\
& \text{H} \end{align*} \) and \(\begin{align*} & \text{H} - \text{C} = \text{C} - \text{C} = \text{C} - \text{OH} \\
& \text{H} \end{align*} \)

(3) \(\begin{align*} & \text{H} - \text{C} = \text{C} - \text{C} = \text{C} - \text{H} \\
& \text{H} \end{align*} \) and \(\begin{align*} & \text{H} - \text{C} = \text{C} - \text{C} = \text{C} - \text{OH} \\
& \text{H} \end{align*} \)

(4) \(\begin{align*} & \text{H} - \text{C} = \text{C} - \text{C} = \text{C} - \text{H} \\
& \text{H} \end{align*} \) and \(\begin{align*} & \text{H} - \text{C} = \text{C} - \text{C} = \text{C} - \text{OH} \\
& \text{H} \end{align*} \)
Group 10 — Applications of Chemical Principles

If you choose this group, be sure to answer questions 102–106.

102 Petroleum is primarily a mixture of
 (1) alcohols (2) ethers (3) hydrocarbons (4) ketones

103 Given the reaction for the Haber process:
 \[\text{N}_2 + 3\text{H}_2 \rightleftharpoons 2\text{NH}_3 + \text{heat} \]
 The temperature of the reaction is raised in order to
 (1) increase the percent yield of nitrogen
 (2) increase the rate of formation of ammonia
 (3) affect the forward reaction rate most
 (4) affect the reverse reaction rate least

104 Given the lead-acid battery reaction:
 \[\text{Pb} + \text{PbO}_2 + 2\text{H}_2\text{SO}_4 \rightleftharpoons 2\text{PbSO}_4 + 2\text{H}_2\text{O} \]
 When the battery is being charged, what are the reactants?
 (1) Pb and H\textsubscript{2}SO\textsubscript{4} (2) Pb and PbO\textsubscript{2} (3) PbSO\textsubscript{4} and H\textsubscript{2}SO\textsubscript{4} (4) PbSO\textsubscript{4} and H\textsubscript{2}O

105 The components of petroleum are separated by a process called
 (1) cracking (2) saponification (3) fractional distillation (4) condensation polymerization

106 What is the final product in the contact process?
 (1) SO\textsubscript{2} (2) H\textsubscript{2}SO\textsubscript{4} (3) N\textsubscript{2} (4) N\textsubscript{2}O\textsubscript{5}

Group 11 — Nuclear Chemistry

If you choose this group, be sure to answer questions 107–111.

107 In the reaction \(^9_4 \text{Be} + X \rightarrow ^6_3 \text{Li} + ^4_2 \text{He} \), the X represents
 (1) \(^0_1 \text{e} \) (2) \(^1_1 \text{H} \) (3) \(^0_{-1} \text{e} \) (4) \(^1_0 \text{n} \)

108 Artificial transmutation is brought about by using accelerated particles to bombard an atom’s
 (1) nucleus (2) valence shells (3) occupied sublevels (4) inner principal energy levels

109 Which isotope can be used as a tracer in an organic reaction?
 (1) H-1 (2) H-2 (3) C-12 (4) C-14

110 Water and molten sodium are used in nuclear reactors as
 (1) coolants (2) moderators (3) control rods (4) fuels

111 In a particle accelerator, the accelerated particle primarily gains
 (1) heat energy (2) kinetic energy (3) nuclear energy (4) potential energy
112 A student found the boiling point of a liquid to be 80.4°C. If the liquid's actual boiling point is 80.6°C, the experimental percent error is equal to

\[
\left(\frac{80.6 - 80.4}{80.6} \right) \times 100 \]

(1) \(\frac{80.6 - 80.4}{80.6} \times 100 \)
(2) \(\frac{80.6 - 80.4}{80.4} \times 100 \)
(3) \(\frac{80.5 - 80.4}{80.5} \times 100 \)
(4) \(\frac{80.5 - 80.4}{80.4} \times 100 \)

113 The graph below shows the heating curve of 1.0 gram of a solid as it is heated at a constant rate, starting at a temperature below its melting point.

Based on this graph, what is the heat of vaporization?

(1) 200 calories, as measured along line \(BC \)
(2) 250 calories, as measured along line \(BC \)
(3) 400 calories, as measured along line \(DE \)
(4) 800 calories, as measured along line \(DE \)

114 Which measurement contains a total of three significant figures?

(1) 0.12
(2) 012
(3) 120
(4) 120.

115 A student determined the solubility of an unknown solid in various solvents as shown in the table below.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Solubility</th>
</tr>
</thead>
<tbody>
<tr>
<td>benzene</td>
<td>insoluble</td>
</tr>
<tr>
<td>water</td>
<td>soluble</td>
</tr>
<tr>
<td>ethanol</td>
<td>slightly soluble</td>
</tr>
<tr>
<td>toluene</td>
<td>insoluble</td>
</tr>
</tbody>
</table>

Based on these solubility results, the unknown solid is best described as

(1) ionic
(2) nonpolar
(3) network
(4) metallic

116 In a laboratory experiment, a student reacted 2.8 grams of Fe(s) (steel wool) in excess CuSO₄(aq), according to the following balanced equation:

\[
\text{Fe(s)} + \text{CuSO}_4(\text{aq}) \rightarrow \text{FeSO}_4(\text{aq}) + \text{Cu(s)}
\]

When the Fe(s) was completely consumed, the precipitated Cu(s) had a mass of 3.2 grams. Did the student's result in this experiment verify the mole ratio of Fe(s) to Cu(s) as predicted by the equation?

(1) Yes, because the experimental result was 2:1.
(2) No, because the experimental result was 2:1.
(3) Yes, because the experimental result was 1:1.
(4) No, because the experimental result was 1:1.
Part II (35 credits)

Answer the questions in only seven of the twelve groups in this part. Be sure to mark the answers to the groups of questions you choose in accordance with the instructions on the front cover of the test booklet. Leave blank the five groups of questions you do not choose to answer.

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matter and Energy</td>
<td>Atomic Structure</td>
<td>Bonding</td>
<td>Periodic Table</td>
</tr>
<tr>
<td>57 1 2 3 4</td>
<td>62 1 2 3 4</td>
<td>67 1 2 3 4</td>
<td>72 1 2 3 4</td>
</tr>
<tr>
<td>58 1 2 3 4</td>
<td>63 1 2 3 4</td>
<td>68 1 2 3 4</td>
<td>73 1 2 3 4</td>
</tr>
<tr>
<td>59 1 2 3 4</td>
<td>64 1 2 3 4</td>
<td>69 1 2 3 4</td>
<td>74 1 2 3 4</td>
</tr>
<tr>
<td>60 1 2 3 4</td>
<td>65 1 2 3 4</td>
<td>70 1 2 3 4</td>
<td>75 1 2 3 4</td>
</tr>
<tr>
<td>61 1 2 3 4</td>
<td>66 1 2 3 4</td>
<td>71 1 2 3 4</td>
<td>76 1 2 3 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 5</th>
<th>Group 6</th>
<th>Group 7</th>
<th>Group 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics of Chemistry</td>
<td>Kinetics and Equilibrium</td>
<td>Acids and Bases</td>
<td>Redox and Electrochemistry</td>
</tr>
<tr>
<td>77 1 2 3 4</td>
<td>82 1 2 3 4</td>
<td>87 1 2 3 4</td>
<td>92 1 2 3 4</td>
</tr>
<tr>
<td>78 1 2 3 4</td>
<td>83 1 2 3 4</td>
<td>88 1 2 3 4</td>
<td>93 1 2 3 4</td>
</tr>
<tr>
<td>79 1 2 3 4</td>
<td>84 1 2 3 4</td>
<td>89 1 2 3 4</td>
<td>94 1 2 3 4</td>
</tr>
<tr>
<td>80 1 2 3 4</td>
<td>85 1 2 3 4</td>
<td>90 1 2 3 4</td>
<td>95 1 2 3 4</td>
</tr>
<tr>
<td>81 1 2 3 4</td>
<td>86 1 2 3 4</td>
<td>91 1 2 3 4</td>
<td>96 1 2 3 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 9</th>
<th>Group 10</th>
<th>Group 11</th>
<th>Group 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Chemistry</td>
<td>Applications of Chemical Principles</td>
<td>Nuclear Chemistry</td>
<td>Laboratory Activities</td>
</tr>
<tr>
<td>97 1 2 3 4</td>
<td>102 1 2 3 4</td>
<td>107 1 2 3 4</td>
<td>112 1 2 3 4</td>
</tr>
<tr>
<td>98 1 2 3 4</td>
<td>103 1 2 3 4</td>
<td>108 1 2 3 4</td>
<td>113 1 2 3 4</td>
</tr>
<tr>
<td>99 1 2 3 4</td>
<td>104 1 2 3 4</td>
<td>109 1 2 3 4</td>
<td>114 1 2 3 4</td>
</tr>
<tr>
<td>100 1 2 3 4</td>
<td>105 1 2 3 4</td>
<td>110 1 2 3 4</td>
<td>115 1 2 3 4</td>
</tr>
<tr>
<td>101 1 2 3 4</td>
<td>106 1 2 3 4</td>
<td>111 1 2 3 4</td>
<td>116 1 2 3 4</td>
</tr>
</tbody>
</table>

I do hereby affirm, at the close of this examination, that I had no unlawful knowledge of the questions or answers prior to the examination and that I have neither given nor received assistance in answering any of the questions during the examination.

Signature

The University of the State of New York
REGENTS HIGH SCHOOL EXAMINATION
CHEMISTRY

Tuesday, January 23, 2001 — 9:15 a.m. to 12:15 p.m., only

ANSWER SHEET

Student .. Sex: □ Male □ Female

Teacher ..

School ..

FOR TEACHER USE ONLY

Credits

Part I (Use table below)
Part II
Total

Rater’s Initials:

Part I Credits

Directions to Teacher:

In the table below, draw a circle around the number of right answers and the adjacent number of credits. Then write the number of credits (not the number right) in the space provided above.

<table>
<thead>
<tr>
<th>No.</th>
<th>Right Credits</th>
<th>No.</th>
<th>Right Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>65</td>
<td>58</td>
<td>65</td>
</tr>
<tr>
<td>57</td>
<td>65</td>
<td>59</td>
<td>65</td>
</tr>
<tr>
<td>60</td>
<td>65</td>
<td>52</td>
<td>65</td>
</tr>
<tr>
<td>61</td>
<td>65</td>
<td>53</td>
<td>65</td>
</tr>
<tr>
<td>62</td>
<td>65</td>
<td>54</td>
<td>65</td>
</tr>
<tr>
<td>63</td>
<td>65</td>
<td>55</td>
<td>65</td>
</tr>
<tr>
<td>64</td>
<td>65</td>
<td>56</td>
<td>65</td>
</tr>
<tr>
<td>65</td>
<td>65</td>
<td>57</td>
<td>65</td>
</tr>
<tr>
<td>66</td>
<td>65</td>
<td>58</td>
<td>65</td>
</tr>
<tr>
<td>67</td>
<td>65</td>
<td>59</td>
<td>65</td>
</tr>
<tr>
<td>68</td>
<td>65</td>
<td>60</td>
<td>65</td>
</tr>
<tr>
<td>61</td>
<td>65</td>
<td>62</td>
<td>65</td>
</tr>
<tr>
<td>63</td>
<td>65</td>
<td>64</td>
<td>65</td>
</tr>
<tr>
<td>65</td>
<td>65</td>
<td>66</td>
<td>65</td>
</tr>
<tr>
<td>67</td>
<td>65</td>
<td>68</td>
<td>65</td>
</tr>
<tr>
<td>69</td>
<td>65</td>
<td>70</td>
<td>65</td>
</tr>
<tr>
<td>71</td>
<td>65</td>
<td>72</td>
<td>65</td>
</tr>
<tr>
<td>73</td>
<td>65</td>
<td>74</td>
<td>65</td>
</tr>
<tr>
<td>75</td>
<td>65</td>
<td>76</td>
<td>65</td>
</tr>
<tr>
<td>77</td>
<td>65</td>
<td>78</td>
<td>65</td>
</tr>
<tr>
<td>79</td>
<td>65</td>
<td>80</td>
<td>65</td>
</tr>
<tr>
<td>81</td>
<td>65</td>
<td>82</td>
<td>65</td>
</tr>
<tr>
<td>83</td>
<td>65</td>
<td>84</td>
<td>65</td>
</tr>
<tr>
<td>85</td>
<td>65</td>
<td>86</td>
<td>65</td>
</tr>
<tr>
<td>87</td>
<td>65</td>
<td>88</td>
<td>65</td>
</tr>
<tr>
<td>89</td>
<td>65</td>
<td>90</td>
<td>65</td>
</tr>
</tbody>
</table>

No. right

Your answers for Part II should be placed in the proper spaces on the back of this sheet.