This is a test of your knowledge of chemistry. Use that knowledge to answer all questions in this examination. Some questions may require the use of the Reference Tables for Physical Setting/Chemistry. You are to answer all questions in all parts of this examination according to the directions provided in the examination booklet.

Your answer sheet for Part A and Part B–1 is the last page of this examination booklet. Turn to the last page and fold it along the perforations. Then, slowly and carefully, tear off your answer sheet and fill in the heading.

The answers to the questions in Part B–2 and Part C are to be written in your separate answer booklet. Be sure to fill in the heading on the front of your answer booklet.

Record the number of your choice for each Part A and Part B–1 multiple-choice question on your separate answer sheet. Write your answers to the Part B–2 and Part C questions in your answer booklet. All work should be written in pen, except for graphs and drawings, which should be done in pencil. You may use scrap paper to work out the answers to the questions, but be sure to record all your answers on your separate answer sheet and in your answer booklet.

When you have completed the examination, you must sign the statement printed at the end of your separate answer sheet, indicating that you had no unlawful knowledge of the questions or answers prior to the examination and that you have neither given nor received assistance in answering any of the questions during the examination. Your answer sheet and answer booklet cannot be accepted if you fail to sign this declaration.

Notice...

A four-function or scientific calculator and a copy of the Reference Tables for Physical Setting/Chemistry must be available for you to use while taking this examination.

The use of any communications device is strictly prohibited when taking this examination. If you use any communications device, no matter how briefly, your examination will be invalidated and no score will be calculated for you.

DO NOT OPEN THIS EXAMINATION BOOKLET UNTIL THE SIGNAL IS GIVEN.
Part A

Answer all questions in this part.

Directions (1–30): For each statement or question, write on the separate answer sheet the number of the word or expression that, of those given, best completes the statement or answers the question. Some questions may require the use of the Reference Tables for Physical Setting/Chemistry.

1 Which subatomic particle has a negative charge?
 (1) proton (3) neutron
 (2) electron (4) positron

2 Which statement best describes the nucleus of an aluminum atom?
 (1) It has a charge of +13 and is surrounded by a total of 10 electrons.
 (2) It has a charge of +13 and is surrounded by a total of 13 electrons.
 (3) It has a charge of −13 and is surrounded by a total of 10 electrons.
 (4) It has a charge of −13 and is surrounded by a total of 13 electrons.

3 The atomic mass of an element is the weighted average of the
 (1) number of protons in the isotopes of that element
 (2) number of neutrons in the isotopes of that element
 (3) atomic numbers of the naturally occurring isotopes of that element
 (4) atomic masses of the naturally occurring isotopes of that element

4 In which pair do the particles have approximately the same mass?
 (1) proton and electron
 (2) proton and neutron
 (3) neutron and electron
 (4) neutron and beta particle

5 Two different samples decompose when heated. Only one of the samples is soluble in water. Based on this information, these two samples are
 (1) both the same element
 (2) two different elements
 (3) both the same compound
 (4) two different compounds

6 The elements located in the lower left corner of the Periodic Table are classified as
 (1) metals (3) metalloids
 (2) nonmetals (4) noble gases

7 Which of these elements has the lowest melting point?
 (1) Li (3) K
 (2) Na (4) Rb

8 Which list consists of elements that have the most similar chemical properties?
 (1) Mg, Al, and Si
 (2) Mg, Ca, and Ba
 (3) K, Al, and Ni
 (4) K, Ca, and Ga

9 The correct chemical formula for iron(II) sulfide is
 (1) FeS (3) FeSO₄
 (2) Fe₂S₃ (4) Fe₂(SO₄)₃

10 Which list consists of types of chemical formulas?
 (1) atoms, ions, molecules
 (2) metals, nonmetals, metalloids
 (3) empirical, molecular, structural
 (4) synthesis, decomposition, neutralization

11 Which type of bonding is found in all molecular substances?
 (1) covalent bonding (3) ionic bonding
 (2) hydrogen bonding (4) metallic bonding

12 An aqueous solution of sodium chloride is best classified as
 (1) homogeneous compound
 (2) homogeneous mixture
 (3) heterogeneous compound
 (4) heterogeneous mixture
13. What is the total number of electrons shared in a double covalent bond between two atoms?
(1) 1 (3) 8
(2) 2 (4) 4

14. Which formula represents a nonpolar molecule?
(1) H₂S (3) CH₄
(2) HCl (4) NH₃

15. What occurs when an atom loses an electron?
(1) The atom’s radius decreases and the atom becomes a negative ion.
(2) The atom’s radius decreases and the atom becomes a positive ion.
(3) The atom’s radius increases and the atom becomes a negative ion.
(4) The atom’s radius increases and the atom becomes a positive ion.

16. Two samples of gold that have different temperatures are placed in contact with one another. Heat will flow spontaneously from a sample of gold at 60°C to a sample of gold that has a temperature of
(1) 50°C (3) 70°C
(2) 60°C (4) 80°C

17. Under which conditions of temperature and pressure would helium behave most like an ideal gas?
(1) 50 K and 20 kPa (3) 750 K and 20 kPa
(2) 50 K and 600 kPa (4) 750 K and 600 kPa

18. A sample of oxygen gas is sealed in container X. A sample of hydrogen gas is sealed in container Z. Both samples have the same volume, temperature, and pressure. Which statement is true?
(1) Container X contains more gas molecules than container Z.
(2) Container X contains fewer gas molecules than container Z.
(3) Containers X and Z both contain the same number of gas molecules.
(4) Containers X and Z both contain the same mass of gas.

19. Which formula represents an unsaturated hydrocarbon?

\[
\begin{align*}
\text{(1)} & \quad \text{H}_2\text{C} = \text{C} - \text{H} \\
\text{(2)} & \quad \text{C} = \text{C} - \text{Cl}
\end{align*}
\]

20. Given the formula:

\[
\text{H} - \text{C} = \text{C} - \text{C} - \text{C} = \text{H}
\]

What is the IUPAC name of this compound?
(1) 2-pentene (3) 2-butene
(2) 2-pentyne (4) 2-butyne

21. Given the reaction system in a closed container at equilibrium and at a temperature of 298 K:

\[
\text{N}_2\text{O}_4(g) \rightleftharpoons 2\text{NO}_2(g)
\]

The measurable quantities of the gases at equilibrium must be
(1) decreasing (3) equal
(2) increasing (4) constant

22. Atoms of which element can bond with each other to form ring and chain structures in compounds?
(1) C (3) H
(2) Ca (4) Na

23. In a voltaic cell, chemical energy is converted to
(1) electrical energy, spontaneously
(2) electrical energy, nonspontaneously
(3) nuclear energy, spontaneously
(4) nuclear energy, nonspontaneously
24 In each of the four beakers shown below, a 2.0-centimeter strip of magnesium ribbon reacts with 100 milliliters of HCl(aq) under the conditions shown.

![Beakers A, B, C, D]

In which beaker will the reaction occur at the fastest rate?

(1) A (2) B (3) C (4) D

25 Which aqueous solution is the best conductor of an electrical current?

(1) 0.01 M CH₃OH (2) 0.01 M KOH (3) 0.1 M CH₃OH (4) 0.1 M KOH

26 A hydrogen ion, H⁺, in aqueous solution may also be written as

(1) H₂O (2) H₂O₂ (3) H₃O⁺ (4) OH⁻

27 One acid-base theory states that an acid is

(1) an electron donor (2) a neutron donor (3) an H⁺ donor (4) an OH⁻ donor

28 Which isotope will spontaneously decay and emit particles with a charge of +2?

(1) ⁵³Fe (2) ¹³⁷Cs (3) ¹⁹⁸Au (4) ²²⁰Fr

29 Radioactive cobalt-60 is used in radiation therapy treatment. Cobalt-60 undergoes beta decay. This type of nuclear reaction is called

(1) natural transmutation (2) artificial transmutation (3) nuclear fusion (4) nuclear fission

Note that question 30 has only three choices.

30 Given the balanced ionic equation:

\[2\text{Al}(s) + 3\text{Cu}^{2+}(aq) \rightarrow 2\text{Al}^{3+}(aq) + 3\text{Cu}(s) \]

Compared to the total charge of the reactants, the total charge of the products is

(1) less (2) greater (3) the same
Part B–1

Answer all questions in this part.

Directions (31–50): For each statement or question, write on the separate answer sheet the number of the word or expression that, of those given, best completes the statement or answers the question. Some questions may require the use of the Reference Tables for Physical Setting/Chemistry.

31 The percentage by mass of Br in the compound AlBr₃ is closest to
 (1) 10.0% (3) 75%
 (2) 25% (4) 90.0%

32 Which symbol represents a particle with a total of 10 electrons?
 (1) N (3) Al
 (2) N³⁺ (4) Al³⁺

33 Which electron configuration represents an atom of aluminum in an excited state?
 (1) 2-7-4 (3) 2-8-3
 (2) 2-7-7 (4) 2-8-6

34 At STP, an element that is a brittle solid and a poor conductor of heat and electricity could have an atomic number of
 (1) 12 (3) 16
 (2) 13 (4) 17

35 Based on Reference Table S, atoms of which of these elements have the strongest attraction for the electrons in a chemical bond?
 (1) Al (3) P
 (2) Si (4) S

36 A sample of a compound contains 65.4 grams of zinc, 12.0 grams of carbon, and 48.0 grams of oxygen. What is the mole ratio of zinc to carbon to oxygen in this compound?
 (1) 1:1:2 (3) 1:4:6
 (2) 1:1:3 (4) 5:1:4

37 Which process would most effectively separate two liquids with different molecular polarities?
 (1) filtration (3) distillation
 (2) fermentation (4) conductivity

38 Given the balanced equation:
 \[\text{AgNO}_3(\text{aq}) + \text{NaCl}(\text{aq}) \rightarrow \text{NaNO}_3(\text{aq}) + \text{AgCl(s)} \]
 This reaction is classified as
 (1) synthesis (2) decomposition
 (3) single replacement (4) double replacement

39 A solution contains 35 grams of KNO₃ dissolved in 100 grams of water at 40°C. How much more KNO₃ would have to be added to make it a saturated solution?
 (1) 29 g (3) 12 g
 (2) 24 g (4) 4 g

40 Which diagram best represents a gas in a closed container?

 (1) (2) (3) (4)

41 What is the total number of moles of NaCl(s) needed to make 3.0 liters of a 2.0 M NaCl solution?
 (1) 1.0 mol (3) 6.0 mol
 (2) 0.70 mol (4) 8.0 mol
42 Which Lewis electron-dot diagram is correct for a S$^{2-}$ ion?

\[
\begin{array}{cc}
\text{[}\widehat{\text{S}}\text{]}^2^- & \text{[}\widehat{\text{S}}\text{]}'^2^- \\
(1) & (3) \\
\text{[}\widehat{\text{S}}\text{]}^2^- & \text{[}\widehat{\text{S}}\text{]}^2^- \\
(2) & (4)
\end{array}
\]

43 A student wants to prepare a 1.0-liter solution of a specific molarity. The student determines that the mass of the solute needs to be 30. grams. What is the proper procedure to follow?

(1) Add 30. g of solute to 1.0 L of solvent.
(2) Add 30. g of solute to 970. mL of solvent to make 1.0 L of solution.
(3) Add 1000. g of solvent to 30. g of solute.
(4) Add enough solvent to 30. g of solute to make 1.0 L of solution.

44 What is the total number of joules released when a 5.00-gram sample of water changes from liquid to solid at 0°C?

(1) 334 J
(2) 1670 J
(3) 2260 J
(4) 11 300 J

45 Which set of procedures and observations indicates a chemical change?

(1) Ethanol is added to an empty beaker and the ethanol eventually disappears.
(2) A solid is gently heated in a crucible and the solid slowly turns to liquid.
(3) Large crystals are crushed with a mortar and pestle and become powder.
(4) A cool, shiny metal is added to water in a beaker and rapid bubbling occurs.

46 At STP, a sample of which element has the highest entropy?

(1) Na(s)
(2) Hg(ℓ)
(3) Br$_2$(ℓ)
(4) F$_2$(g)

47 Given the incomplete equation representing an organic addition reaction:

\[X(g) + Cl_2(g) \rightarrow XCl_2(g)\]

Which compound could be represented by X?

(1) CH$_4$
(2) C$_2$H$_4$
(3) C$_3$H$_8$
(4) C$_4$H$_{10}$

48 Given the incomplete equation:

\[4Fe + 3O_2 \rightarrow 2X\]

Which compound is represented by X?

(1) FeO
(2) Fe$_2$O$_3$
(3) Fe$_3$O$_2$
(4) Fe$_3$O$_4$

49 How are HNO$_3$(aq) and CH$_3$COOH(aq) similar?

(1) They are Arrhenius acids and they turn blue litmus red.
(2) They are Arrhenius acids and they turn red litmus blue.
(3) They are Arrhenius bases and they turn blue litmus red.
(4) They are Arrhenius bases and they turn red litmus blue.

50 The chart below shows the spontaneous nuclear decay of U-238 to Th-234 to Pa-234 to U-234.

What is the correct order of nuclear decay modes for the change from U-238 to U-234?

(1) β^- decay, γ decay, β^- decay
(2) β^- decay, β^- decay, α decay
(3) α decay, α decay, β^- decay
(4) α decay, β^- decay, β^- decay
Part B–2

Answer all questions in this part.

Directions (51–67): Record your answers in the spaces provided in your answer booklet. Some questions may require the use of the Reference Tables for Physical Setting/Chemistry.

51 In the space in your answer booklet, show a correct numerical setup for calculating the formula mass of glucose, C\textsubscript{6}H\textsubscript{12}O\textsubscript{6}. [1]

52 Write the empirical formula for the compound C\textsubscript{6}H\textsubscript{12}O\textsubscript{6}. [1]

Base your answers to questions 53 through 55 on the potential energy diagram below.

53 What is the heat of reaction for the forward reaction? [1]

54 What is the activation energy for the forward reaction with the catalyst? [1]

55 Explain, in terms of the function of a catalyst, why the curves on the potential energy diagram for the catalyzed and uncatalyzed reactions are different. [1]

Base your answers to questions 56 through 58 on the properties of propanone.

56 In the space in your answer booklet, draw the structural formula for propanone. [1]

57 Explain, in terms of molecular energy, why the vapor pressure of propanone increases when its temperature increases. [1]

58 A liquid’s boiling point is the temperature at which its vapor pressure is equal to the atmospheric pressure. Using Reference Table H, what is the boiling point of propanone at an atmospheric pressure of 70 kPa? [1]
Base your answers to questions 59 through 61 on the information below.

Two isotopes of potassium are K-37 and K-42.

59 What is the total number of neutrons in the nucleus of a K-37 atom? [1]

60 How many valence electrons are in an atom of K-42 in the ground state? [1]

61 Explain, in terms of subatomic particles, why K-37 and K-42 are isotopes of potassium. [1]

62 A sample of oxygen gas in one container has a volume of 20.0 milliliters at 297 K and 101.3 kPa. The entire sample is transferred to another container where the temperature is 283 K and the pressure is 94.6 kPa. In the space in your answer booklet, show a correct numerical setup for calculating the new volume of this sample of oxygen gas. [1]

63 In the space in your answer booklet, draw a Lewis electron-dot diagram for a molecule of phosphorus trichloride, PCl₃. [1]

Base your answers to questions 64 through 67 on the table below.

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic Number</th>
<th>First Ionization Energy (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lithium</td>
<td>3</td>
<td>520</td>
</tr>
<tr>
<td>sodium</td>
<td>11</td>
<td>496</td>
</tr>
<tr>
<td>potassium</td>
<td>19</td>
<td>419</td>
</tr>
<tr>
<td>rubidium</td>
<td>37</td>
<td>403</td>
</tr>
<tr>
<td>cesium</td>
<td>55</td>
<td>376</td>
</tr>
</tbody>
</table>

64 On the grid in your answer booklet, mark an appropriate scale on the axis labeled “First Ionization Energy (kJ/mol).” An appropriate scale is one that allows a trend to be seen. [1]

65 On the same grid, plot the data from the table. Circle and connect the points. [1]

Example: [diagram]

66 State the trend in first ionization energy for the elements in the table as the atomic number increases. [1]

67 Explain, in terms of atomic structure, why cesium has a lower first ionization energy than rubidium. [1]
Part C

Answer all questions in this part.

Directions (68–85): Record your answers in the spaces provided in your answer booklet. Some questions may require the use of the Reference Tables for Physical Setting/Chemistry.

Base your answers to questions 68 through 70 on the information below.

The decomposition of sodium azide, NaN₃(s), is used to inflate airbags. On impact, the NaN₃(s) is ignited by an electrical spark, producing N₂(g) and Na(s). The N₂(g) inflates the airbag.

68 Balance the equation in your answer booklet, using the smallest whole-number coefficients. [1]

69 What is the total number of moles present in a 52.0-gram sample of NaN₃(s) (gram-formula mass = 65.0 gram/mole)? [1]

70 An inflated airbag has a volume of \(5.00 \times 10^4\) cm³ at STP. The density of N₂(g) at STP is 0.00125 g/cm³. What is the total number of grams of N₂(g) in the airbag? [1]

Base your answers to questions 71 through 73 on the information below.

Element X is a solid metal that reacts with chlorine to form a water-soluble binary compound.

71 State one physical property of element X that makes it a good material for making pots and pans. [1]

72 Explain, in terms of particles, why an aqueous solution of the binary compound conducts an electric current. [1]

73 The binary compound consists of element X and chlorine in a 1:2 molar ratio. What is the oxidation number of element X in this compound? [1]
Base your answers to questions 74 through 76 on the diagram and balanced equation below, which represent the electrolysis of molten NaCl.

2NaCl → Cl₂ + 2Na

74 When the switch is closed, which electrode will attract the sodium ions? [1]

75 What is the purpose of the battery in this electrolytic cell? [1]

76 Write the balanced half-reaction for the reduction that occurs in this electrolytic cell. [1]

Base your answers to questions 77 through 79 on the information below.

In a titration, 3.00 M NaOH(aq) was added to an Erlenmeyer flask containing 25.00 milliliters of HCl(aq) and three drops of phenolphthalein until one drop of the NaOH(aq) turned the solution a light-pink color. The following data were collected by a student performing this titration.

Initial NaOH(aq) buret reading: 14.45 milliliters
Final NaOH(aq) buret reading: 32.66 milliliters

77 What is the total volume of NaOH(aq) that was used in this titration? [1]

78 In the space in your answer booklet, show a correct numerical setup for calculating the molarity of the HCl(aq). [1]

79 Based on the data given, what is the correct number of significant figures that should be shown in the molarity of the HCl(aq)? [1]
Base your answers to questions 80 through 82 on the information below.

A student was studying the pH differences in samples from two Adirondack streams. The student measured a pH of 4 in stream A and a pH of 6 in stream B.

80 Compare the hydronium ion concentration in stream A to the hydronium ion concentration in stream B. [1]

81 What is the color of bromthymol blue in the sample from stream A? [1]

82 Identify one compound that could be used to neutralize the sample from stream A. [1]

Base your answers to questions 83 through 85 on the information below.

The radioisotopes carbon-14 and nitrogen-16 are present in a living organism. Carbon-14 is commonly used to date a once-living organism.

83 Complete the nuclear equation in your answer booklet for the decay of C-14. Include both the atomic number and the mass number of the missing particle. [1]

84 Explain why N-16 is a poor choice for radioactive dating of a bone. [1]

85 A sample of wood is found to contain $\frac{1}{8}$ as much C-14 as is present in the wood of a living tree. What is the approximate age, in years, of this sample of wood? [1]
The University of the State of New York

REGENTS HIGH SCHOOL EXAMINATION

PHYSICAL SETTING
CHEMISTRY

Tuesday, August 16, 2005 — 12:30 to 3:30 p.m., only

ANSWER SHEET

Student .. Sex: □ Male □ Female Grade
Teacher .. School ...

Record your answers to Part A and Part B–1 on this answer sheet.

<table>
<thead>
<tr>
<th>Part A</th>
<th>Part B–1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>34</td>
</tr>
<tr>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
</tr>
<tr>
<td>7</td>
<td>37</td>
</tr>
<tr>
<td>8</td>
<td>38</td>
</tr>
<tr>
<td>9</td>
<td>39</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

Part A Score

Part B–1 Score

Write your answers to Part B–2 and Part C in your answer booklet.

The declaration below should be signed when you have completed the examination.

I do hereby affirm, at the close of this examination, that I had no unlawful knowledge of the questions or answers prior to the examination and that I have neither given nor received assistance in answering any of the questions during the examination.

--
Signature

Tear Here Tear Here