29 The coordinates of the endpoints of \overline{BC} are $B(5,1)$ and $C(-3,-2)$. Under the transformation R_{90}, the image of \overline{BC} is $\overline{B'C'}$. State the coordinates of points B' and C'.

Score 2: The student has a complete and correct response.
The coordinates of the endpoints of \overline{BC} are $B(5,1)$ and $C(-3,-2)$. Under the transformation R_{90}, the image of \overline{BC} is $B'C'$. State the coordinates of points B' and C'.

Score 1: The student did not express the coordinates as an ordered pair.
The coordinates of the endpoints of \overline{BC} are $B(5,1)$ and $C(-3,-2)$. Under the transformation R_{90}, the image of \overline{BC} is $\overline{B'C'}$. State the coordinates of points B' and C'.

\begin{align*}
B' & : (1, -5) \\
C' & : (2, -3)
\end{align*}

Score 1: The student only stated $(2, -3)$ correctly.
The coordinates of the endpoints of \overline{BC} are $B(5,1)$ and $C(-3,-2)$. Under the transformation R_{90}, the image of \overline{BC} is $\overline{B'C'}$. State the coordinates of points B' and C'.

Score 0: The student's work is completely incorrect.
30 As shown in the diagram below, AS is a diagonal of trapezoid $STAR$, $RA \parallel ST$, $m\angle ATS = 48$, $m\angle RSA = 47$, and $m\angle ARS = 68$.

Determine and state the longest side of $\triangle SAT$.

\[\begin{array}{c}
\text{R} \quad 68^\circ \\
A \quad 65^\circ \\
S \quad 47^\circ \\
T \quad 48^\circ \\
\end{array} \]

\[\begin{array}{c}
\frac{47 + 68}{115^\circ} + \frac{65 + 118}{113^\circ} = \frac{1150 + 1130}{1130} \\
\end{array} \]

\[\overline{ST} \text{ is the longest side.} \]

Score 2: The student has a complete and correct response.
30 As shown in the diagram below, \overline{AS} is a diagonal of trapezoid $STAR$, $\overline{RA} \parallel \overline{ST}$, $\angle ATS = 48$, $\angle RSA = 47$, and $\angle ARS = 68$.

Determine and state the longest side of $\triangle SAT$.

Score 2: The student has a complete and correct response.
30 As shown in the diagram below, \(\overline{AS} \) is a diagonal of trapezoid \(\text{STAR} \), \(\overline{RA} \parallel \overline{ST} \), \(m\angle ATS = 48 \), \(m\angle RSA = 47 \), and \(m\angle ARS = 68 \).

Determine and state the longest side of \(\triangle SAT \).

Score 1: The student made one conceptual error in finding \(m\angle SAT = 47 \), but found an appropriate \(m\angle AST \) and determined \(\overline{AT} \) as the longest side.
30 As shown in the diagram below, \(\overline{AS} \) is a diagonal of trapezoid \(\text{STAR} \), \(\overline{RA} \parallel \overline{ST} \), \(m\angle ATS = 48 \), \(m\angle RSA = 47 \), and \(m\angle ARS = 68 \).

Determine and state the longest side of \(\triangle SAT \).

Score 0: The student made one conceptual error in finding \(m\angle SAT \). A longest side was not stated.
31 In right triangle ABC shown below, altitude BD is drawn to hypotenuse AC.

If $AD = 8$ and $DC = 10$, determine and state the length of AB.

\[
\begin{align*}
\frac{\text{leg}}{\text{hyp}} & = \frac{8}{x} = \frac{x}{18} \\
x^2 & = 144 \\
x & = 12
\end{align*}
\]

Length of $AB = 12$

Score 2: The student has a complete and correct response.
31 In right triangle ABC shown below, altitude BD is drawn to hypotenuse AC.

If $AD = 8$ and $DC = 10$, determine and state the length of AB.

\[
\frac{8}{x} = \frac{x}{10} \\
x^2 = 80 \\
\sqrt{80} = 4\sqrt{5} \\
\]

Score 1: The student made a conceptual error when writing the proportion, but wrote an appropriate solution.
In right triangle ABC shown below, altitude BD is drawn to hypotenuse AC.

If $AD = 8$ and $DC = 10$, determine and state the length of AB.

\[\frac{8}{x} = \frac{x}{10} \]

\[80 = x^2 \]

\[x = 8.99 \]

\[8.99^2 + 8^2 = y^2 \]

\[79.21 + 64 = 143.21 \]

\[y = 11.96 \]

Score 1: The student found an approximate length of BD, and used it to find the length of AB.
31. In right triangle ABC shown below, altitude BD is drawn to hypotenuse AC.

If $AD = 8$ and $DC = 10$, determine and state the length of AB.

Score 0: The student’s work is completely incorrect.
32 Two prisms with equal altitudes have equal volumes. The base of one prism is a square with a side length of 5 inches. The base of the second prism is a rectangle with a side length of 10 inches. Determine and state, in inches, the measure of the width of the rectangle.

\[A = bh \]
\[A = 25 \]
\[25 = 10x \]
\[2.5 = x \]

Score 2: The student has a complete and correct response.
Two prisms with equal altitudes have equal volumes. The base of one prism is a square with a side length of 5 inches. The base of the second prism is a rectangle with a side length of 10 inches. Determine and state, in inches, the measure of the width of the rectangle.

\[V = lwh \]

\[V = V \]

\[5^2 = 10w \]

\[10 = 10w \]

\[\frac{10}{10} = \frac{w}{w} \]

\[1 = w \]

Score 1: The student made a conceptual error in squaring 5.
32 Two prisms with equal altitudes have equal volumes. The base of one prism is a square with a side length of 5 inches. The base of the second prism is a rectangle with a side length of 10 inches. Determine and state, in inches, the measure of the width of the rectangle.

Score 0: The student did not write an equation or state an answer.
As shown in the diagram below, BO and tangents BA and BC are drawn from external point B to circle O. Radii OA and OC are drawn.

If $OA = 7$ and $DB = 18$, determine and state the length of AB.

$$18 \cdot 32 = AB^2$$

$$\sqrt{576} = AB$$

$$24 = AB$$

Score 2: The student has a complete and correct response using the theorem of a tangent and secant drawn to a circle. $AB = 24$ is stated.
33 As shown in the diagram below, \(BO \) and tangents \(BA \) and \(BC \) are drawn from external point \(B \) to circle \(O \). Radii \(OA \) and \(OC \) are drawn.

If \(OA = 7 \) and \(DB = 18 \), determine and state the length of \(AB \).

\[
25^2 - 7^2 = 576
\]

\[
\sqrt{576} = 24
\]

\(AB = 24 \)

Score 2: The student has a correct response. The student used the Pythagorean Theorem to find \(AB = 24 \).
As shown in the diagram below, BO and tangents BA and BC are drawn from external point B to circle O. Radii OA and OC are drawn.

If $OA = 7$ and $DB = 18$, determine and state the length of AB.

Score 1: The student made a computational error in calculating 25^2.

\[a^2 + b^2 = 25^2 \]
\[4a + 25 = 225 \]
\[4a = 200 \]
\[a = 50 \]
\[b = \sqrt{126} \]
\[b \approx 13.3 \]
33 As shown in the diagram below, BO and tangents BA and BC are drawn from external point B to circle O. Radii OA and OC are drawn.

If $OA = 7$ and $DB = 18$, determine and state the length of AB.

\[
a^2 + b^2 = c^2 \\
7^2 + b^2 = 18^2 \\
49 + b^2 = 324 \\
-49 \\
\sqrt{b^2} = \sqrt{275} \\
\]

\[
b = \sqrt{25 \cdot 11} \\
b = 5\sqrt{11}.
\]

Score 1: The student made a conceptual error by using 18 as the length of the hypotenuse.
33 As shown in the diagram below, BO and tangents BA and BC are drawn from external point B to circle O. Radii OA and OC are drawn.

If $OA = 7$ and $DB = 18$, determine and state the length of AB.

\[a^2 + b^2 = c^2 \]
\[7^2 + 18^2 = c^2 \]
\[\sqrt{37} \cdot 3 = c^2 \]
\[19.3 = c \]

Score 0: The student made two conceptual errors.
34 Triangle RST is similar to $\triangle XYZ$ with $RS = 3$ inches and $XY = 2$ inches. If the area of $\triangle RST$ is 27 square inches, determine and state the area of $\triangle XYZ$, in square inches.

Score 2: The student has a complete and correct response.
34 Triangle RST is similar to $\triangle XYZ$ with $RS = 3$ inches and $XY = 2$ inches. If the area of $\triangle RST$ is 27 square inches, determine and state the area of $\triangle XYZ$, in square inches.

\[
\frac{27}{A} = \frac{3^2}{2^2} \quad \Rightarrow \quad \frac{27}{A} = \frac{9}{4}
\]

\[
9A = 108 \quad \Rightarrow \quad A = 12
\]

Score 2: The student has a complete and correct response.
Triangle RST is similar to $\triangle XYZ$ with $RS = 3$ inches and $XY = 2$ inches. If the area of $\triangle RST$ is 27 square inches, determine and state the area of $\triangle XYZ$, in square inches.

\[
\frac{3}{27} = \frac{2}{x}
\]

\[3x = 2(27)\]

\[\frac{3x}{3} = \frac{54}{3}\]

\[x = 18\]

The area of $\triangle XYZ$ is 18in^2

Score 1: The student made one conceptual error by not squaring the sides in the ratio.
34 Triangle RST is similar to $\triangle XYZ$ with $RS = 3$ inches and $XY = 2$ inches. If the area of $\triangle RST$ is 27 square inches, determine and state the area of $\triangle XYZ$, in square inches.

Score 1: The student correctly calculated the height of $\triangle XYZ$, but made an error in calculating the area of the triangle.
34 Triangle RST is similar to $\triangle XYZ$ with $RS = 3$ inches and $XY = 2$ inches. If the area of $\triangle RST$ is 27 square inches, determine and state the area of $\triangle XYZ$, in square inches.

\[
\frac{x^2}{3^2} = \frac{4}{9}
\]

\[
\left(\frac{9}{4}\right) \frac{4}{9} x = 27 \left(\frac{9}{14}\right)
\]

\[
x = 60
\]

Score 0: The student made an error by labeling the area of $\triangle XYZ$ as 27. The student made a rounding error in finding $x = 60$.
35 The graph below shows $\triangle A'B'C'$, the image of $\triangle ABC$ after it was reflected over the y-axis.

Graph and label $\triangle ABC$, the pre-image of $\triangle A'B'C'$.

Graph and label $\triangle A''B''C''$, the image of $\triangle A'B'C'$ after it is reflected through the origin.

State a single transformation that will map $\triangle ABC$ onto $\triangle A''B''C''$.

Score 4: The student has a complete and correct response.
Question 35

35 The graph below shows ΔA′B′C′, the image of ΔABC after it was reflected over the y-axis.

Graph and label ΔABC, the pre-image of ΔA′B′C′.

Graph and label ΔA"B"C", the image of ΔA′B′C′ after it is reflected through the origin.

State a single transformation that will map ΔABC onto ΔA"B"C".

Score 3: The student graphed and labeled ΔABC and ΔA"B"C" correctly, but stated an incorrect transformation.
Question 35

35 The graph below shows $\triangle A'B'C'$, the image of $\triangle ABC$ after it was reflected over the y-axis.

Graph and label $\triangle ABC$, the pre-image of $\triangle A'B'C'$.

Graph and label $\triangle A''B''C''$, the image of $\triangle A'B'C'$ after it is reflected through the origin.

State a single transformation that will map $\triangle ABC$ onto $\triangle A''B''C''$.

Score 2: The student graphed and labeled $\triangle ABC$ correctly, but made one conceptual error in graphing $\triangle A''B''C''$. An appropriate transformation was stated.
35 The graph below shows $\triangle A'B'C'$, the image of $\triangle ABC$ after it was reflected over the y-axis.

Graph and label $\triangle ABC$, the pre-image of $\triangle A'B'C'$.

Graph and label $\triangle A''B''C''$, the image of $\triangle A'B'C'$ after it is reflected through the origin.

State a single transformation that will map $\triangle ABC$ onto $\triangle A''B''C''$.

Score 1: The student graphed and labeled $\triangle ABC$ correctly. No further correct work is shown.
35 The graph below shows $\triangle A'B'C'$, the image of $\triangle ABC$ after it was reflected over the y-axis.

Graph and label $\triangle ABC$, the pre-image of $\triangle A'B'C'$.

Graph and label $\triangle A''B''C''$, the image of $\triangle A'B'C'$ after it is reflected through the origin.

State a single transformation that will map $\triangle ABC$ onto $\triangle A''B''C''$.

Score 0: The student has no correct work.
36 On the set of axes below, sketch the locus of points 2 units from the x-axis and sketch the locus of points 6 units from the point $(0,4)$.

Label with an X all points that satisfy both conditions.

Score 4: The student has a complete and correct response.
36 On the set of axes below, sketch the locus of points 2 units from the x-axis and sketch the locus of points 6 units from the point (0,4).

Label with an X all points that satisfy both conditions.

Score 3: The student sketched both loci correctly, but labeled only one point of intersection with an X.
36 On the set of axes below, sketch the locus of points 2 units from the x-axis and sketch the locus of points 6 units from the point $(0,4)$.

Label with an X all points that satisfy both conditions.

Score 2: The student made a conceptual error by sketching the locus of points 2 units from the y-axis. Appropriate points are labeled with an X.
36 On the set of axes below, sketch the locus of points 2 units from the x-axis and sketch the locus of points 6 units from the point $(0,4)$.

Label with an X all points that satisfy both conditions.

Score 2: The student made a conceptual error by not graphing $y = -2$. Appropriate points are labeled with an X.
Question 36

36 On the set of axes below, sketch the locus of points 2 units from the x-axis and sketch the locus of points 6 units from the point $(0,4)$.

Label with an X all points that satisfy both conditions.

Score 1: The student sketched one locus correctly.
Question 36

36 On the set of axes below, sketch the locus of points 2 units from the x-axis and sketch the locus of points 6 units from the point (0,4).

Label with an X all points that satisfy both conditions.

Score 0: The student did not graph \(y = -2\) and sketched the locus of points 6 units from (4,0) instead of (0,4). Points of intersection are not labeled.
Using a compass and straightedge, construct an equilateral triangle with AB as a side.

Using this triangle, construct a 30° angle with its vertex at A.
[Leave all construction marks.]

Score 4: The student has a complete and correct construction.
37 Using a compass and straightedge, construct an equilateral triangle with \overline{AB} as a side.

Using this triangle, construct a 30° angle with its vertex at A.
[Leave all construction marks.]

Score 4: The student has a complete and correct construction.
37 Using a compass and straightedge, construct an equilateral triangle with \overline{AB} as a side.

Using this triangle, construct a 30° angle with its vertex at A.
[Leave all construction marks.]

Score 3 The student has a correct construction of an equilateral triangle, but constructed a 30° angle at a vertex other than A.
37 Using a compass and straightedge, construct an equilateral triangle with AB as a side. Using this triangle, construct a 30° angle with its vertex at A. [Leave all construction marks.]

Score 3: The student showed all appropriate arcs for constructing an equilateral triangle, but did not draw both sides. The student made a correct construction of a 30° angle at vertex A.
37 Using a compass and straightedge, construct an equilateral triangle with AB as a side.

Using this triangle, construct a 30° angle with its vertex at A.

[Leave all construction marks.]

Score 2: The student showed a correct construction of an equilateral triangle. No further correct work is shown.
Question 37

37 Using a compass and straightedge, construct an equilateral triangle with \overline{AB} as a side.

Using this triangle, construct a 30° angle with its vertex at A.
[Leave all construction marks.]

Score 1: The student showed all appropriate arcs for constructing an equilateral triangle, but did not draw the sides. No further correct work is shown.
37 Using a compass and straightedge, construct an equilateral triangle with AB as a side.

Using this triangle, construct a 30° angle with its vertex at A.
[Leave all construction marks.]

Score 1: The student showed an appropriate construction of an equilateral triangle, but used a length other than AB.
37 Using a compass and straightedge, construct an equilateral triangle with AB as a side.

Using this triangle, construct a 30° angle with its vertex at A.

[Leave all construction marks.]

Score 0: The student made a drawing that is not an appropriate construction.
38 The vertices of quadrilateral $JKLM$ have coordinates $J(-3,1)$, $K(1,-5)$, $L(7,-2)$, and $M(3,4)$.

Prove that $JKLM$ is a parallelogram.

Prove that $JKLM$ is not a rhombus.

[The use of the set of axes below is optional.]

\[m_{JM} = \frac{4-1}{3+3} = \frac{3}{6} = \frac{1}{2} \]
\[m_{KL} = \frac{-2-5}{7-1} = \frac{-7}{6} = \frac{1}{-2} \]
\[\overrightarrow{JM} \parallel \overrightarrow{KL} \text{ are } \parallel \]

\[m_{JK} = \frac{-5-1}{1+3} = \frac{-6}{4} = \frac{3}{2} \]
\[m_{ML} = \frac{4+2}{3-7} = \frac{6}{-4} = \frac{-3}{2} \]
\[\overrightarrow{JK} \parallel \overrightarrow{ML} \text{ are } \parallel \]

\[\text{J}KLM \text{ is a } \square \]
\[\text{b/c the } 2 \text{ pairs of opposite sides are } \parallel \text{ and equal.} \]

Score 6: The student has a complete and correct response.
38 The vertices of quadrilateral $JKLM$ have coordinates $J(-3,1)$, $K(1,-5)$, $L(7,-2)$, and $M(3,4)$.

Prove that $JKLM$ is a parallelogram.

Prove that $JKLM$ is not a rhombus.

[The use of the set of axes below is optional.]

Score 5: The student did not write the radical symbol when finding the length of KL.

Geometry – June ’14
38 The vertices of quadrilateral $JKLM$ have coordinates $J(-3,1)$, $K(1,-5)$, $L(7,-2)$, and $M(3,4)$.

Prove that $JKLM$ is a parallelogram.

Prove that $JKLM$ is not a rhombus.

[The use of the set of axes below is optional.]

\[JM = \frac{1-4}{-3-3} = \frac{-3}{-6} = \frac{3}{6} \]
\[KL = \frac{-5+2}{1-7} = \frac{-3}{-6} = \frac{3}{6} \]
\[ML = \frac{4+2}{7-7} = \frac{6}{0} = \text{undefined} \]
\[JK = \frac{-5-1}{-3-1} = \frac{-6}{-4} = \frac{3}{2} \]

$JKLM$ is a parallelogram.

A parallelogram contains 2 sets of parallel sides.

Parallel sides are created when 2 segments share the same slope.

\[m = \frac{y_2 - y_1}{x_2 - x_1} \]
\[KM = \frac{-5}{1-3} = \frac{-9}{-2} \]
\[JL = \frac{4+2}{3-7} = \frac{3}{-10} \]

The diagonals in a rhombus form a right angle. Since the slopes of the diagonals are not negative reciprocals, it is not a rhombus because the diagonals are not perpendicular and do not form a right angle.

Score 4: The student made a computational error in finding the slope of ML. The student made a second error in finding the slope of JK.

Geometry – June ’14
The vertices of quadrilateral $JKLM$ have coordinates $J(-3,1)$, $K(1,-5)$, $L(7,-2)$, and $M(3,4)$.

Prove that $JKLM$ is a parallelogram.

Prove that $JKLM$ is not a rhombus.

[The use of the set of axes below is optional.]

Score 3: The student showed work to prove $JKLM$ is not a rhombus.
38 The vertices of quadrilateral $JKLM$ have coordinates $J(-3,1)$, $K(1,-5)$, $L(7,-2)$, and $M(3,4)$.

Prove that $JKLM$ is a parallelogram.

Prove that $JKLM$ is not a rhombus.

[The use of the set of axes below is optional.]

Score 2: The student did work to show that one pair of sides is congruent and parallel.
38 The vertices of quadrilateral $JKLM$ have coordinates $J(-3,1)$, $K(1,-5)$, $L(7,-2)$, and $M(3,4)$.

Prove that $JKLM$ is a parallelogram.

Prove that $JKLM$ is not a rhombus.

[The use of the set of axes below is optional.]

Score 1: The student found the slopes of all four sides. The concluding statement is not complete.
38 The vertices of quadrilateral $JKLM$ have coordinates $J(-3,1), K(1,-5), L(7,-2)$, and $M(3,4)$.

Prove that $JKLM$ is a parallelogram.

Prove that $JKLM$ is not a rhombus.

[The use of the set of axes below is optional.]

Score 1: The student found the slopes of both diagonals.
The vertices of quadrilateral $JKLM$ have coordinates $J(-3,1)$, $K(1,-5)$, $L(7,-2)$, and $M(3,4)$.

Prove that $JKLM$ is a parallelogram.

Prove that $JKLM$ is not a rhombus.

[The use of the set of axes below is optional.]

Score 0: The student has no relevant work.