The University of the State of New York

REGENTS HIGH SCHOOL EXAMINATION

GEOMETRY

Wednesday, August 13, 2014 — 8:30 to 11:30 a.m., only

SCORING KEY AND RATING GUIDE

Mechanics of Rating

The following procedures are to be followed for scoring student answer papers for the Regents Examination in Geometry. More detailed information about scoring is provided in the publication Information Booklet for Scoring the Regents Examinations in Mathematics.

Do not attempt to correct the student’s work by making insertions or changes of any kind. In scoring the open-ended questions, use check marks to indicate student errors. Unless otherwise specified, mathematically correct variations in the answers will be allowed. Units need not be given when the wording of the questions allows such omissions.

Each student’s answer paper is to be scored by a minimum of three mathematics teachers. No one teacher is to score more than approximately one-third of the open-ended questions on a student’s paper. Teachers may not score their own students’ answer papers. On the student’s separate answer sheet, for each question, record the number of credits earned and the teacher’s assigned rater/scorer letter.

Schools are not permitted to rescore any of the open-ended questions on this exam after each question has been rated once, regardless of the final exam score. Schools are required to ensure that the raw scores have been added correctly and that the resulting scale score has been determined accurately.

Raters should record the student’s scores for all questions and the total raw score on the student’s separate answer sheet. Then the student’s total raw score should be converted to a scale score by using the conversion chart that will be posted on the Department’s web site at: http://www.p12.nysed.gov/assessment/ on Wednesday, August 13, 2014. Because scale scores corresponding to raw scores in the conversion chart may change from one administration to another, it is crucial that, for each administration, the conversion chart provided for that administration be used to determine the student’s final score. The student’s scale score should be entered in the box provided on the student’s separate answer sheet. The scale score is the student’s final examination score.
If the student’s responses for the multiple-choice questions are being hand scored prior to being scanned, the scorer must be careful not to make any marks on the answer sheet except to record the scores in the designated score boxes. Marks elsewhere on the answer sheet will interfere with the accuracy of the scanning.

Part I

Allow a total of 56 credits, 2 credits for each of the following.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(11)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(12)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(13)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(14)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(15)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(16)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(17)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(18)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(19)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(20)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(21)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(22)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(23)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(24)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(25)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
General Rules for Applying Mathematics Rubrics

I. General Principles for Rating

The rubrics for the constructed-response questions on the Regents Examination in Geometry are designed to provide a systematic, consistent method for awarding credit. The rubrics are not to be considered all-inclusive; it is impossible to anticipate all the different methods that students might use to solve a given problem. Each response must be rated carefully using the teacher's professional judgment and knowledge of mathematics; all calculations must be checked. The specific rubrics for each question must be applied consistently to all responses. In cases that are not specifically addressed in the rubrics, raters must follow the general rating guidelines in the publication Information Booklet for Scoring the Regents Examinations in Mathematics, use their own professional judgment, confer with other mathematics teachers, and/or contact the State Education Department for guidance. During each Regents Examination administration period, rating questions may be referred directly to the Education Department. The contact numbers are sent to all schools before each administration period.

II. Full-Credit Responses

A full-credit response provides a complete and correct answer to all parts of the question. Sufficient work is shown to enable the rater to determine how the student arrived at the correct answer.

When the rubric for the full-credit response includes one or more examples of an acceptable method for solving the question (usually introduced by the phrase “such as”), it does not mean that there are no additional acceptable methods of arriving at the correct answer. Unless otherwise specified, mathematically correct alternative solutions should be awarded credit. The only exceptions are those questions that specify the type of solution that must be used; e.g., an algebraic solution or a graphic solution. A correct solution using a method other than the one specified is awarded half the credit of a correct solution using the specified method.

III. Appropriate Work

Full-Credit Responses: The directions in the examination booklet for all the constructed-response questions state: “Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc.” The student has the responsibility of providing the correct answer and showing how that answer was obtained. The student must “construct” the response; the teacher should not have to search through a group of seemingly random calculations scribbled on the student paper to ascertain what method the student may have used.

Responses With Errors: Rubrics that state “Appropriate work is shown, but…” are intended to be used with solutions that show an essentially complete response to the question but contain certain types of errors, whether computational, rounding, graphing, or conceptual. If the response is incomplete; i.e., an equation is written but not solved or an equation is solved but not all of the parts of the question are answered, appropriate work has not been shown. Other rubrics address incomplete responses.

IV. Multiple Errors

Computational Errors, Graphing Errors, and Rounding Errors: Each of these types of errors results in a 1-credit deduction. Any combination of two of these types of errors results in a 2-credit deduction. No more than 2 credits should be deducted for such mechanical errors in any response. The teacher must carefully review the student's work to determine what errors were made and what type of errors they were.

Conceptual Errors: A conceptual error involves a more serious lack of knowledge or procedure. Examples of conceptual errors include using the incorrect formula for the area of a figure, choosing the incorrect trigonometric function, or multiplying the exponents instead of adding them when multiplying terms with exponents.

If a response shows repeated occurrences of the same conceptual error, the student should not be penalized twice. If the same conceptual error is repeated in responses to other questions, credit should be deducted in each response.

For 4- and 6-credit questions, if a response shows one conceptual error and one computational, graphing, or rounding error, the teacher must award credit that takes into account both errors. Refer to the rubric for specific scoring guidelines.
Part II

For each question, use the specific criteria to award a maximum of 2 credits. Unless otherwise specified, mathematically correct alternative solutions should be awarded appropriate credit.

(29) [2] \(\triangle A'B'C' \) is graphed and labeled correctly.

[1] Appropriate work is shown, but one graphing or labeling error is made.

\[\text{or} \]

[1] Appropriate work is shown, but one conceptual error is made.

\[\text{or} \]

[1] \(\triangle A'B'C' \) is graphed correctly, but the points are not labeled or are labeled incorrectly.

\[\text{or} \]

[1] \(A'(-4,2), B'(6,2), \) and \(C'(0,-6) \) are stated correctly, but \(\triangle A'B'C' \) is not graphed.

[0] \((-4,2), (6,2), \) and \((0,-6)\) are stated, but not labeled, and \(\triangle A'B'C' \) is not graphed.

\[\text{or} \]

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.

(30) [2] 35, and correct work is shown, such as a correctly labeled diagram.

[1] Appropriate work is shown, but one computational error is made.

\[\text{or} \]

[1] Appropriate work is shown, but one conceptual error is made.

\[\text{or} \]

[1] The measures of \(FC, DF, \) and \(EC \) are found, but no further correct work is shown.

\[\text{or} \]

[1] 35, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
(31) [2] (0,1), and correct work is shown.

[1] Appropriate work is shown, but one computational error is made.

 or

[1] Appropriate work is shown, but one conceptual error is made.

 or

[1] The correct translation is stated, but no further correct work is shown.

 or

[1] (0,1), but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.

(32) [2] 172 and 94, and correct work is shown.

[1] Appropriate work is shown, but one computational error is made.

 or

[1] Appropriate work is shown, but one conceptual error is made.

 or

[1] Appropriate work is shown to find 172 or 94, but no further correct work is shown.

 or

[1] 172 and 94, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
(33) [2] 60, and correct work is shown.

[1] Appropriate work is shown, but one computational error is made.

or

[1] Appropriate work is shown, but one conceptual error is made.

or

[1] Appropriate work is shown to find \(x = 8\), but the length of \(QM\) is not stated.

or

[1] 60, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.

(34) [2] 108, and correct work is shown.

[1] Appropriate work is shown, but one computational error is made.

or

[1] Appropriate work is shown, but one conceptual error is made.

or

[1] Appropriate work is shown to find 5, the number of sides, but no further correct work is shown.

or

[1] 108, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
Part III

For each question, use the specific criteria to award a maximum of 4 credits. Unless otherwise specified, mathematically correct alternative solutions should be awarded appropriate credit.

(35) [4] A complete and correct proof that includes a concluding statement is written.

[3] A proof is written that demonstrates a thorough understanding of the method of proof and contains no conceptual errors, but one statement and/or reason is missing or is incorrect or no concluding statement is written.

or

[3] \(\triangle MAB \equiv \triangle THB \) is proven, but no further correct work is shown.

[2] A proof is written that demonstrates a good understanding of the method of proof and contains no conceptual errors, but two statements and/or reasons are missing or are incorrect.

or

[2] A proof is written that demonstrates a good understanding of the method of proof, but one conceptual error is made.

[1] Only one correct statement and reason are written.

[0] The “given” and/or the “prove” statements are written, but no further correct relevant statements are written.

or

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
4] 98.4, and correct work is shown.

3] Appropriate work is shown, but one computational or rounding error is made.

or

3] Appropriate work is shown, but the lateral area is expressed as an appropriate decimal in terms of π.

2] Appropriate work is shown, but two or more computational or rounding errors are made.

or

2] Appropriate work is shown, but one conceptual error is made, such as using 10 as the slant height.

or

2] Appropriate work is shown to find $\sqrt{109}$, the slant height, but no further correct work is shown.

1] Appropriate work is shown, but one conceptual error and one computational or rounding error are made.

or

1] 98.4, but no work is shown.

0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
[4] A correct construction is drawn showing all appropriate arcs, and \(\overline{AB} \) is divided into four congruent segments.

[3] A correct construction is drawn showing all appropriate arcs for two perpendicular bisectors, and two quarter segments and a half segment of \(\overline{AB} \) are shown, but no further correct work is shown.

or

[3] A correct construction is drawn for the perpendicular bisector of \(\overline{AB} \). All construction arcs are drawn to bisect each congruent segment of \(\overline{AB} \), but the midpoints are not indicated.

[2] A correct construction is drawn for only the perpendicular bisector of \(\overline{AB} \), but no further correct work is shown.

[1] All construction arcs are drawn for the perpendicular bisector of \(\overline{AB} \), but the midpoint is not indicated.

[0] A drawing that is not an appropriate construction is shown.

or

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
Part IV

For this question, use the specific criteria to award a maximum of 6 credits. Unless otherwise specified, mathematically correct alternative solutions should be awarded appropriate credit.

(38) [6] Both loci are graphed correctly, $(x - 3)^2 + (y + 2)^2 = 25$ and $y = -x - 4$ or equivalent equations are written, and $(-2, -2)$ and $(3, -7)$ are stated.

[5] Both loci are graphed, but one graphing error is made. Appropriate equations are written, and appropriate coordinates are stated.

or

[5] Both loci are graphed correctly, $(x - 3)^2 + (y + 2)^2 = 25$ and $y = -x - 4$ are written. Either $(-2, -2)$ or $(3, -7)$ is stated.

or

[5] Both loci are graphed correctly, $(x - 3)^2 + (y + 2)^2 = 25$ and $y = -x - 4$ are written. Appropriate intersecting points are marked on the graph.

or

[5] Both loci are graphed correctly, $(-2, -2)$ and $(3, -7)$ are stated. Either $y = -x - 4$ or $(x - 3)^2 + (y + 2)^2 = 25$ is written.

[4] Both loci are graphed, but two or more graphing errors are made. Appropriate equations are written, and appropriate coordinates are stated.

or

[4] Both loci are graphed correctly, $(x - 3)^2 + (y + 2)^2 = 25$ and $y = -x - 4$ are written. The coordinates of the points of intersection are not stated or are stated incorrectly.

or

[4] Both loci are graphed correctly, and $(-2, -2)$ and $(3, -7)$ are stated. The equations are not written or are written incorrectly.

or

[4] $(x - 3)^2 + (y + 2)^2 = 25$ and $y = -x - 4$ are written. Appropriate work is shown to find $(-2, -2)$ and $(3, -7)$, but neither locus is graphed.

[3] Both loci are graphed, but one conceptual error is made. Appropriate equations are written, and appropriate coordinates are stated.
[3] Both loci are graphed correctly. Either \((x - 3)^2 + (y + 2)^2 = 25\) or \(y = -x - 4\) is written. The coordinates of the points of intersection are not stated or are stated incorrectly.

or

[3] Both loci are graphed correctly. Either \((-2, -2)\) or \((3, -7)\) is stated. The equations are not written or are written incorrectly.

[2] Both loci are graphed, but one conceptual error and one graphing error are made. Appropriate equations are written, and appropriate coordinates are stated.

or

[2] Both loci are graphed correctly, but no further correct work is shown.

or

[2] Only one locus is graphed correctly, and appropriate points of intersection for the loci are stated. No further correct work is shown.

or

[2] One locus is graphed correctly, and its equation is written correctly. No further correct work is shown.

or

[2] \((x - 3)^2 + (y + 2)^2 = 25\) and \(y = -x - 4\) are written. No further correct work is shown.

[1] Appropriate work is shown, but one conceptual error and two or more graphing errors are made. Appropriate equations are written, and appropriate coordinates are stated.

or

[1] One locus is graphed correctly, but no further correct work is shown.

or

[1] \((x - 3)^2 + (y + 2)^2 = 25\) or \(y = -x - 4\) is written. No further work is shown.

or

[1] \((-2, -2)\) and \((3, -7)\), but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
Map to Core Curriculum

<table>
<thead>
<tr>
<th>Content Band</th>
<th>Item Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric Relationships</td>
<td>1, 28, 36</td>
</tr>
<tr>
<td>Constructions</td>
<td>37</td>
</tr>
<tr>
<td>Locus</td>
<td>38</td>
</tr>
<tr>
<td>Informal and Formal Proofs</td>
<td>2, 3, 10, 13, 16, 17, 18, 19, 21, 22, 23, 24, 27, 30, 32, 33, 34, 35</td>
</tr>
<tr>
<td>Transformational Geometry</td>
<td>5, 8, 29, 31</td>
</tr>
<tr>
<td>Coordinate Geometry</td>
<td>4, 6, 7, 9, 11, 12, 14, 15, 20, 25, 26</td>
</tr>
</tbody>
</table>

Regents Examination in Geometry
August 2014
Chart for Converting Total Test Raw Scores to Final Examination Scores (Scale Scores)

The Chart for Determining the Final Examination Score for the August 2014 Regents Examination in Geometry will be posted on the Department’s web site at: http://www.p12.nysed.gov/assessment/ on Wednesday, August 13, 2014. Conversion charts provided for previous administrations of the Regents Examination in Geometry must NOT be used to determine students’ final scores for this administration.

Online Submission of Teacher Evaluations of the Test to the Department

Suggestions and feedback from teachers provide an important contribution to the test development process. The Department provides an online evaluation form for State assessments. It contains spaces for teachers to respond to several specific questions and to make suggestions. Instructions for completing the evaluation form are as follows:

2. Select the test title.

3. Complete the required demographic fields.

4. Complete each evaluation question and provide comments in the space provided.

5. Click the SUBMIT button at the bottom of the page to submit the completed form.