FOR TEACHERS ONLY

The University of the State of New York
REGENTS HIGH SCHOOL EXAMINATION

INTEGRATED ALGEBRA

Tuesday, August 13, 2013 — 8:30 to 11:30 a.m., only

SCORING KEY AND RATING GUIDE

Mechanics of Rating

The following procedures are to be followed for scoring student answer papers for the Regents Examination in Integrated Algebra. More detailed information about scoring is provided in the publication Information Booklet for Scoring the Regents Examinations in Mathematics.

Do not attempt to correct the student’s work by making insertions or changes of any kind. In scoring the open-ended questions, use check marks to indicate student errors. Unless otherwise specified, mathematically correct variations in the answers will be allowed. Units need not be given when the wording of the questions allows such omissions.

Each student’s answer paper is to be scored by a minimum of three mathematics teachers. No one teacher is to score more than approximately one-third of the open-ended questions on a student’s paper. Teachers may not score their own students’ answer papers. On the student’s separate answer sheet, for each question, record the number of credits earned and the teacher’s assigned rater/scorer letter.

Schools are not permitted to rescore any of the open-ended questions on this exam after each question has been rated once, regardless of the final exam score. Schools are required to ensure that the raw scores have been added correctly and that the resulting scale score has been determined accurately.

Raters should record the student’s scores for all questions and the total raw score on the student’s separate answer sheet. Then the student’s total raw score should be converted to a scale score by using the conversion chart that will be posted on the Department’s web site at: http://www.p12.nysed.gov/assessment/ on Tuesday, August 13, 2013. Because scale scores corresponding to raw scores in the conversion chart may change from one administration to another, it is crucial that, for each administration, the conversion chart provided for that administration be used to determine the student’s final score. The student’s scale score should be entered in the box provided on the student’s separate answer sheet. The scale score is the student’s final examination score.
If the student’s responses for the multiple-choice questions are being hand scored prior to being scanned, the scorer must be careful not to make any marks on the answer sheet except to record the scores in the designated score boxes. Marks elsewhere on the answer sheet will interfere with the accuracy of the scanning.

Part I

Allow a total of 60 credits, 2 credits for each of the following.

<table>
<thead>
<tr>
<th>(1) ...</th>
<th>(11) ...</th>
<th>(21) ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) ...</td>
<td>(12) ...</td>
<td>(22) ...</td>
</tr>
<tr>
<td>(3) ...</td>
<td>(13) ...</td>
<td>(23) ...</td>
</tr>
<tr>
<td>(4) ...</td>
<td>(14) ...</td>
<td>(24) ...</td>
</tr>
<tr>
<td>(5) ...</td>
<td>(15) ...</td>
<td>(25) ...</td>
</tr>
<tr>
<td>(6) ...</td>
<td>(16) ...</td>
<td>(26) ...</td>
</tr>
<tr>
<td>(7) ...</td>
<td>(17) ...</td>
<td>(27) ...</td>
</tr>
<tr>
<td>(8) ...</td>
<td>(18) ...</td>
<td>(28) ...</td>
</tr>
<tr>
<td>(9) ...</td>
<td>(19) ...</td>
<td>(29) ...</td>
</tr>
<tr>
<td>(10) ...</td>
<td>(20) ...</td>
<td>(30) ...</td>
</tr>
</tbody>
</table>

Updated information regarding the rating of this examination may be posted on the New York State Education Department’s web site during the rating period. Check this web site at: http://www.p12.nysed.gov/assessment/ and select the link “Scoring Information” for any recently posted information regarding this examination. This site should be checked before the rating process for this examination begins and several times throughout the Regents Examination period.
General Rules for Applying Mathematics Rubrics

I. General Principles for Rating

The rubrics for the constructed-response questions on the Regents Examination in Integrated Algebra are designed to provide a systematic, consistent method for awarding credit. The rubrics are not to be considered all-inclusive; it is impossible to anticipate all the different methods that students might use to solve a given problem. Each response must be rated carefully using the teacher’s professional judgment and knowledge of mathematics; all calculations must be checked. The specific rubrics for each question must be applied consistently to all responses. In cases that are not specifically addressed in the rubrics, raters must follow the general rating guidelines in the publication Information Booklet for Scoring the Regents Examinations in Mathematics, use their own professional judgment, confer with other mathematics teachers, and/or contact the State Education Department for guidance. During each Regents Examination administration period, rating questions may be referred directly to the Education Department. The contact numbers are sent to all schools before each administration period.

II. Full-Credit Responses

A full-credit response provides a complete and correct answer to all parts of the question. Sufficient work is shown to enable the rater to determine how the student arrived at the correct answer.

When the rubric for the full-credit response includes one or more examples of an acceptable method for solving the question (usually introduced by the phrase “such as”), it does not mean that there are no additional acceptable methods of arriving at the correct answer. Unless otherwise specified, mathematically correct alternative solutions should be awarded credit. The only exceptions are those questions that specify the type of solution that must be used; e.g., an algebraic solution or a graphic solution. A correct solution using a method other than the one specified is awarded half the credit of a correct solution using the specified method.

III. Appropriate Work

Full-Credit Responses: The directions in the examination booklet for all the constructed-response questions state: “Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc.” The student has the responsibility of providing the correct answer and showing how that answer was obtained. The student must “construct” the response; the teacher should not have to search through a group of seemingly random calculations scribbled on the student paper to ascertain what method the student may have used.

Responses With Errors: Rubrics that state “Appropriate work is shown, but…” are intended to be used with solutions that show an essentially complete response to the question but contain certain types of errors, whether computational, rounding, graphing, or conceptual. If the response is incomplete; i.e., an equation is written but not solved or an equation is solved but not all of the parts of the question are answered, appropriate work has not been shown. Other rubrics address incomplete responses.

IV. Multiple Errors

Computational Errors, Graphing Errors, and Rounding Errors: Each of these types of errors results in a 1-credit deduction. Any combination of two of these types of errors results in a 2-credit deduction. No more than 2 credits should be deducted for such mechanical errors in any response. The teacher must carefully review the student’s work to determine what errors were made and what type of errors they were.

Conceptual Errors: A conceptual error involves a more serious lack of knowledge or procedure. Examples of conceptual errors include using the incorrect formula for the area of a figure, choosing the incorrect trigonometric function, or multiplying the exponents instead of adding them when multiplying terms with exponents. A response with one conceptual error can receive no more than half credit.

If a response shows repeated occurrences of the same conceptual error, the student should not be penalized twice. If the same conceptual error is repeated in responses to other questions, credit should be deducted in each response.

If a response shows two (or more) different major conceptual errors, it should be considered completely incorrect and receive no credit.

If a response shows one conceptual error and one computational, graphing, or rounding error, the teacher must award credit that takes into account both errors; i.e., awarding half credit for the conceptual error and deducting 1 credit for each mechanical error (maximum of two deductions for mechanical errors).
Part II

For each question, use the specific criteria to award a maximum of 2 credits. Unless otherwise specified, mathematically correct alternative solutions should be awarded appropriate credit.

(31)
\[2\] 475.2, and correct work is shown.
\[1\] Appropriate work is shown, but one computational error is made. An appropriate answer is found.
\[1\] Appropriate work is shown, but one conceptual error is made. An appropriate answer is found.
\[1\] 475.2, but no work is shown.
\[0\] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.

(32)
\[2\] \(12\sqrt{3}\), and correct work is shown.
\[1\] Appropriate work is shown, but one computational or simplification error is made. An appropriate answer in simplest radical form is found.
\[1\] Appropriate work is shown, but one conceptual error is made. An appropriate answer in simplest radical form is found.
\[1\] Appropriate work is shown, but the answer is not expressed in simplest radical form.
\[1\] \(12\sqrt{3}\), but no work is shown.
\[0\] The answer is expressed as a decimal, and no work is shown.
\[0\] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
[2] 2295, and correct work is shown.

[1] Appropriate work is shown, but one computational error is made. An appropriate balance is found.

 or

[1] Appropriate work is shown, but one conceptual error is made. An appropriate balance is found.

 or

[1] $2000(1 + 0.035)^t$ or an equivalent expression is written, but no further correct work is shown.

 or

[1] 2295, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
Part III

For each question, use the specific criteria to award a maximum of 3 credits. Unless otherwise specified, mathematically correct alternative solutions should be awarded appropriate credit.

(34) [3] 75.05, and correct work is shown.

[2] Appropriate work is shown, but one computational error is made. An appropriate amount of change is found.

or

[2] Appropriate work is shown to find 724.95, but no further correct work is shown.

[1] Appropriate work is shown, but two or more computational or rounding errors are made. An appropriate amount of change is found.

or

[1] Appropriate work is shown, but one conceptual error is made. An appropriate amount of change is found.

or

[1] Correct equation(s) are written, but no further correct work is shown.

or

[1] 75.05, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
[3] 36 and 64, and correct algebraic work is shown.

[2] Appropriate work is shown, but one computational error is made. Appropriate values for both numbers are found.

[2] Appropriate work is shown to find 36 or 64. No further correct work is shown.

[1] Appropriate work is shown, but two or more computational errors are made. Appropriate values for both numbers are found.

[1] Appropriate work is shown, but one conceptual error is made. Appropriate values for both numbers are found.

[1] A correct equation or system of equations is written, but no further correct work is shown.

[1] 36 and 64, but a method other than algebraic is used.

[1] 36 and 64, but no work is shown.

[0] 36 or 64, but no work is shown or a method other than algebraic is used.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
0.043, and correct work is shown.

[2] Appropriate work is shown, but one computational or rounding error is made. An appropriate relative error is found.

\[\text{or} \]

\[\frac{134.375}{134.375} - 128.625 \]

or an equivalent expression is written, but the relative error is not found or is found incorrectly.

[1] Appropriate work is shown, but two or more computational or rounding errors are made. An appropriate relative error is found.

\[\text{or} \]

[1] Appropriate work is shown, but one conceptual error is made, such as dividing by 128.625. An appropriate relative error is found.

\[\text{or} \]

[1] Appropriate work is shown to find 128.625 and 134.375, but no further correct work is shown.

\[\text{or} \]

[1] 0.043, but no work is shown.

[0] Appropriate work is shown to find either 128.625 or 134.375, but no further correct work is shown.

\[\text{or} \]

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
Part IV

For each question, use the specific criteria to award a maximum of 4 credits. Unless otherwise specified, mathematically correct alternative solutions should be awarded appropriate credit.

(37) [4] Both equations are graphed correctly, and \((2, -5)\) and \((-2, 3)\) or \(x = 2, y = -5\) and \(x = -2, y = 3\) are stated.

[3] Appropriate work is shown, but one computational or graphing error is made. The appropriate solutions are stated.

or

[3] Both equations are graphed correctly, but only one \((2, -5)\) or \((-2, 3)\) is stated.

[2] Appropriate work is shown, but two or more computational or graphing errors are made. The appropriate solutions are stated.

or

[2] Appropriate work is shown, but one conceptual error is made. The appropriate solutions are stated.

or

[2] Both equations are graphed correctly, but the points of intersection are not stated or are stated incorrectly.

or

[2] \((2, -5)\) and \((-2, 3)\) or \(x = 2, y = -5\) and \(x = -2, y = 3\) are stated, but a method other than graphic is used.

[1] Appropriate work is shown, but one conceptual error and one computational or graphing error are made. The appropriate solutions are stated.

or

[1] One equation is graphed correctly, but no further correct work is shown.

or

[1] \((2, -5)\) and \((-2, 3)\) or \(x = 2, y = -5\) and \(x = -2, y = 3\), but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
(38) \[\frac{3x}{x + 3} \], and correct work is shown.

[3] Appropriate work is shown, but one computational, factoring, or simplification error is made. An appropriate answer is found.

[2] Appropriate work is shown, but two or more computational, factoring, or simplification error are made. An appropriate answer is found.

or

[2] Appropriate work is shown, but one conceptual error is made, such as not multiplying by the reciprocal. An appropriate answer is found.

or

[2] All numerators and denominators are factored correctly, and the expression is rewritten as a product, but no further correct work is shown.

[1] Appropriate work is shown, but one conceptual error and one computational, factoring or simplification error are made. An appropriate answer is found.

or

[1] All numerators and denominators are factored correctly, but no further correct work is shown.

or

[1] \[\frac{3x}{x + 3} \], but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
\[P (\text{not the same color}) = \frac{192}{380} \text{ or an equivalent answer and } P (\text{at least one red}) = \frac{324}{380} \text{ or an equivalent answer, and correct work is shown.} \]

[3] Appropriate work is shown, but one computational error is made. Appropriate probabilities are found.

[2] Appropriate work is shown, but two or more computational errors are made. Appropriate probabilities are found.

\text{or}

[2] Appropriate work is shown, but one conceptual error is made.

\text{or}

[2] Appropriate work is shown to find \(P (\text{not same color}) = \frac{192}{380} \) or \(P (\text{at least one red}) = \frac{324}{380} \), but no further correct work is shown.

[1] Appropriate work is shown, but one conceptual error and one computational error are made. Appropriate probabilities are found.

\text{or}

[1] \(P (\text{not the same color}) = \frac{192}{380} \) and \(P (\text{at least one red}) = \frac{324}{380} \), but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
Map to Core Curriculum

<table>
<thead>
<tr>
<th>Content Strands</th>
<th>Item Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number Sense and Operations</td>
<td>19, 32, 34</td>
</tr>
<tr>
<td>Algebra</td>
<td>2, 4, 5, 6, 7, 9, 10, 11, 15, 16, 17, 18, 20, 21, 23, 28, 29, 30, 33, 35, 38</td>
</tr>
<tr>
<td>Geometry</td>
<td>8, 14, 22, 25, 26, 37</td>
</tr>
<tr>
<td>Measurement</td>
<td>31, 36</td>
</tr>
<tr>
<td>Statistics and Probability</td>
<td>1, 3, 12, 13, 24, 27, 39</td>
</tr>
</tbody>
</table>

Regents Examination in Integrated Algebra
August 2013
Chart for Converting Total Test Raw Scores to Final Examination Scores (Scale Scores)

The Chart for Determining the Final Examination Score for the August 2013 Regents Examination in Integrated Algebra will be posted on the Department’s web site at: http://www.p12.nysed.gov/assessment/ on Tuesday, August 13, 2013. Conversion charts provided for previous administrations of the Regents Examination in Integrated Algebra must NOT be used to determine students’ final scores for this administration.

Online Submission of Teacher Evaluations of the Test to the Department

Suggestions and feedback from teachers provide an important contribution to the test development process. The Department provides an online evaluation form for State assessments. It contains spaces for teachers to respond to several specific questions and to make suggestions. Instructions for completing the evaluation form are as follows:

2. Select the test title.
3. Complete the required demographic fields.
4. Complete each evaluation question and provide comments in the space provided.
5. Click the SUBMIT button at the bottom of the page to submit the completed form.