The following procedures are to be followed for scoring student answer papers for the Mathematics B examination. More detailed information about scoring is provided in the publication Information Booklet for Scoring the Regents Examinations in Mathematics A and Mathematics B.

Use only red ink or red pencil in rating Regents papers. Do not attempt to correct the student’s work by making insertions or changes of any kind. Use check marks to indicate student errors.

Unless otherwise specified, mathematically correct variations in the answers will be allowed. Units need not be given when the wording of the questions allows such omissions.

Each student’s answer paper is to be scored by a minimum of three mathematics teachers. On the back of the student’s detachable answer sheet, raters must enter their initials in the boxes next to the questions they have scored and also write their name in the box under the heading “Rater’s/Scorer’s Name.”

Raters should record the student’s scores for all questions and the total raw score on the student’s detachable answer sheet. Then the student’s total raw score should be converted to a scaled score by using the conversion chart that will be posted on the Department’s web site http://www.emsc.nysed.gov/osa/ on Friday, January 25, 2008. The student’s scaled score should be entered in the box provided on the student’s detachable answer sheet. The scaled score is the student’s final examination score.

Part I

Allow a total of 40 credits, 2 credits for each of the following. Allow credit if the student has written the correct answer instead of the numeral 1, 2, 3, or 4.

(1) 1 (6) 4 (11) 1 (16) 2
(2) 4 (7) 3 (12) 3 (17) 3
(3) 2 (8) 1 (13) 3 (18) 4
(4) 2 (9) 2 (14) 4 (19) 4
(5) 1 (10) 1 (15) 3 (20) 4
General Rules for Applying Mathematics Rubrics

I. General Principles for Rating

The rubrics for the constructed-response questions on the Regents Examinations in Mathematics A and Mathematics B are designed to provide a systematic, consistent method for awarding credit. The rubrics are not to be considered all-inclusive; it is impossible to anticipate all the different methods that students might use to solve a given problem. Each response must be rated carefully using the teacher’s professional judgment and knowledge of mathematics; all calculations must be checked. The specific rubrics for each question must be applied consistently to all responses. In cases that are not specifically addressed in the rubrics, raters must follow the general rating guidelines in the publication Information Booklet for Scoring the Regents Examinations in Mathematics A and Mathematics B, use their own professional judgment, confer with other mathematics teachers, and/or contact the consultants at the State Education Department for guidance. During each Regents examination administration period, rating questions may be referred directly to the Education Department. The contact numbers are sent to all schools before each administration period.

II. Full-Credit Responses

A full-credit response provides a complete and correct answer to all parts of the question. Sufficient work is shown to enable the rater to determine how the student arrived at the correct answer.

When the rubric for the full-credit response includes one or more examples of an acceptable method for solving the question (usually introduced by the phrase “such as”), it does not mean that there are no additional acceptable methods of arriving at the correct answer. Unless otherwise specified, mathematically correct alternative solutions should be awarded credit. The only exceptions are those questions that specify the type of solution that must be used; e.g., an algebraic solution or a graphic solution. A correct solution using a method other than the one specified is awarded half the credit of a correct solution using the specified method.

III. Appropriate Work

Full-Credit Responses: The directions in the examination booklet for all the constructed-response questions state: “Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, charts, etc.” The student has the responsibility of providing the correct answer and showing how that answer was obtained. The student must “construct” the response; the teacher should not have to search through a group of seemingly random calculations scribbled on the student paper to ascertain what method the student may have used.

Responses With Errors: Rubrics that state “Appropriate work is shown, but …” are intended to be used with solutions that show an essentially complete response to the question but contain certain types of errors, whether computational, rounding, graphing, or conceptual. If the response is incomplete, i.e., an equation is written but not solved or an equation is solved but not all of the parts of the question are answered, appropriate work has not been shown. Other rubrics address incomplete responses.

IV. Multiple Errors

Computational Errors, Graphing Errors, and Rounding Errors: Each of these types of errors results in a 1-credit deduction. Any combination of two of these types of errors results in a 2-credit deduction. No more than 2 credits should be deducted for such mechanical errors in any response. The teacher must carefully review the student’s work to determine what errors were made and what type of errors they were.

Conceptual Errors: A conceptual error involves a more serious lack of knowledge or procedure. Examples of conceptual errors include using the incorrect formula for the area of a figure, choosing the incorrect trigonometric function, or multiplying the exponents instead of adding them when multiplying terms with exponents. A response with one conceptual error can receive no more than half credit.

If a response shows repeated occurrences of the same conceptual error, the student should not be penalized twice. If the same conceptual error is repeated in responses to other questions, credit should be deducted in each response.

If a response shows two (or more) different major conceptual errors, it should be considered completely incorrect and receive no credit.

If a response shows one conceptual error and one computational, graphing, or rounding error, the teacher must award credit that takes into account both errors; i.e., awarding half credit for the conceptual error and deducting 1 credit for each mechanical error (maximum of two deductions for mechanical errors).

Updated information regarding the rating of this examination may be posted on the New York State Education Department’s web site during the rating period. Check this web site http://www.emsc.nysed.gov/osa/ and select the link “Examination Scoring Information” for any recently posted information regarding this examination. This site should be checked before the rating process for this examination begins and several times throughout the Regents examination period.
Part II

For each question, use the specific criteria to award a maximum of two credits. Unless otherwise specified, mathematically correct alternative solutions should be awarded appropriate credit.

(21) [2] 20, and appropriate work is shown.

[1] Appropriate work is shown, but one computational error is made.

or

[1] Appropriate work is shown, but one conceptual error is made.

or

[1] A correct equation is written, but no further correct work is shown.

or

[1] 20, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.

(22) [2] 1 and 4, and appropriate work is shown.

[1] Appropriate work is shown, but one computational error is made.

or

[1] Appropriate work is shown, but one conceptual error is made.

or

[1] 1 and 4, but no work is shown.

[0] 1 or 4, but no work is shown.

or

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
(23) [2] \(nd = 350 \) or an equivalent equation and \$87.50, and appropriate work is shown, such as the equation \(350 = 4d \).

[1] Appropriate work is shown, but one computational error is made.

or

[1] Appropriate work is shown, but one conceptual error is made.

or

[1] A correct equation is written, but no further correct work is shown.

or

[1] \$87.50, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.

(24) [2] \(\frac{1}{m^4} \) or \(\left(\frac{1}{m} \right)^4 \), and appropriate work is shown.

[1] Appropriate work is shown, but one computational error is made.

or

[1] Appropriate work is shown, but one conceptual error is made.

or

[1] Appropriate work is shown, but the answer is expressed with a negative exponent, such as \(m^{-4} \).

or

[1] \(\frac{1}{m^4} \) or \(\left(\frac{1}{m} \right)^4 \), but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
(25) [2] 20, and appropriate work is shown or an appropriate explanation is written.

[1] Appropriate work is shown, but one computational error is made.

 or

[1] Appropriate work is shown, but one conceptual error is made.

 or

[1] 20, but no work is shown or no explanation is written.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.

(26) [2] \(x - 2 \), and appropriate work is shown.

[1] Appropriate work is shown, but one computational error is made.

 or

[1] Appropriate work is shown, but one conceptual error is made.

 or

[1] \(x - 2 \), but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
Part III

For each question, use the specific criteria to award a maximum of four credits. Unless otherwise specified, mathematically correct alternative solutions should be awarded appropriate credit.

(27) [4] 23, and appropriate work is shown, such as using the Law of Sines.

[3] Appropriate work is shown, but one computational or rounding error is made.

[2] Appropriate work is shown, but two or more computational or rounding errors are made.

or

[2] Appropriate work is shown, but one conceptual error is made, such as finding 17, the smaller force.

[1] Appropriate work is shown, but one conceptual error and one computational or rounding error are made.

or

[1] 23, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
(28) [4] 2011, and appropriate work is shown, such as solving a logarithmic equation or
trial and error with at least three trials and appropriate checks.

[3] Appropriate work is shown, but one computational or rounding error is made.

\textit{or}

[3] Appropriate work is shown to find t, but the year is not stated or is stated
incorrectly.

[2] Appropriate work is shown, but two or more computational or rounding errors
are made.

\textit{or}

[2] Appropriate work is shown, but one conceptual error is made.

\textit{or}

[2] The trial-and-error method is used to find the correct solution, but only two
trials and appropriate checks are shown.

\textit{or}

[2] The trial-and-error method is attempted and at least six systematic trials and
appropriate checks are shown, but no solution is found.

[1] Appropriate work is shown, but one conceptual error and one computational or
rounding error are made.

\textit{or}

[1] 2011, but no work or only one trial with an appropriate check is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct
response that was obtained by an obviously incorrect procedure.
90° and 270°, and appropriate work is shown, such as solving the equation
3 cos x + 2 sin x cos x = 0 or sketching a graph and finding the x-intercepts.

[3] Appropriate work is shown, but one computational, factoring, or graphing error is made.

or

[3] Appropriate work is shown, but the answers are expressed in radian measure.

[2] Appropriate work is shown, but two or more computational, factoring, or graphing errors are made.

or

[2] Appropriate work is shown, but one conceptual error is made.

or

[2] An appropriate graph is sketched, but no further correct work is shown.

[1] Appropriate work is shown, but one conceptual error and one computational, factoring, or graphing error are made.

or

[1] Correct substitution is made for sin 2x, but no further correct work is shown.

or

[1] 90° and 270°, but no work is shown.

[0] 90° or 270°, but no work is shown.

or

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
(30) [4] \(x^2 + 5x + 6 = 0 \) or an equivalent equation and \(-3\) and \(-2\), and appropriate work is shown, such as using the sum and product formulas or factoring the equation.

[3] Appropriate work is shown, but one computational or factoring error is made.

or

[3] The expression \(x^2 + 5x + 6 \) is written and \(-3\) and \(-2\), and appropriate work is shown.

[2] Appropriate work is shown, but two or more computational or factoring errors are made.

or

[2] Appropriate work is shown, but one conceptual error is made.

or

[2] A correct quadratic equation is written, and appropriate work is shown, but the roots are not found.

or

[2] Appropriate work is shown to find \(-3\) and \(-2\), but no quadratic equation is written.

[1] Appropriate work is shown, but one conceptual error and one computational or factoring error are made.

or

[1] \(x^2 + 5x + 6 = 0 \) or an equivalent equation and \(-3\) and \(-2\), but no work is shown.

[0] A correct quadratic equation or \(-3\) and \(-2\), but no work is shown.

or

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
(31) \[y = 42.2326x^{-0.4494} \] and 4.9, and appropriate work is shown.

[3] Appropriate work is shown, but one computational or rounding error is made.

\[\text{or} \]

[3] A correct regression equation is written and 4.9, but the substitution is not shown.

\[\text{or} \]

[3] The expression \(42.2326x^{-0.4494} \) is written and 4.9, and the substitution is shown.

[2] Appropriate work is shown, but two or more computational or rounding errors are made.

\[\text{or} \]

[2] Appropriate work is shown, but one conceptual error is made, such as not changing 2 minutes to 120 seconds.

\[\text{or} \]

[2] An incorrect power regression equation is solved appropriately, and the substitution is shown.

\[\text{or} \]

[2] A correct regression equation is written, but no further correct work is shown.

[1] Appropriate work is shown, but one conceptual error and one computational or rounding error are made.

\[\text{or} \]

[1] An incorrect equation of a lesser degree of difficulty is solved appropriately.

\[\text{or} \]

[1] 4.9, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
(32) [4] 28, and appropriate work is shown, such as substituting into the given equation or solving the equation graphically.

[3] Appropriate work is shown, but one computational, rounding, or graphing error is made.

or

[3] Appropriate work is shown, but 56, the value of 20, is given as the answer.

[2] Appropriate work is shown, but two or more computational, rounding, or graphing errors are made.

or

[2] Appropriate work is shown, but one conceptual error is made.

[1] Appropriate work is shown, but one conceptual error and one computational, rounding, or graphing error are made.

or

[1] Appropriate work is shown to find the value of sin 20, but no further correct work is shown.

or

[1] 28, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
For each question, use the specific criteria to award a maximum of six credits. Unless otherwise specified, mathematically correct alternative solutions should be awarded appropriate credit.

(33) [6] A complete and correct proof that includes a concluding statement is written.

[5] A proof is written that demonstrates a thorough understanding of the method of proof and contains no conceptual errors, but one statement or reason is missing or is incorrect or no concluding statement is written.

or

[5] \(\frac{WT}{HT} = \frac{AT}{CT} \) or an equivalent proportion is proven, but no further correct work is shown.

[4] A proof is written that demonstrates a good understanding of the method of proof and contains no conceptual errors, but two statements and/or reasons are missing or are incorrect.

[3] A proof is written that demonstrates a good understanding of the method of proof, but one conceptual error is made.

or

[3] \(\Delta WAT \sim \Delta HCT \) is proven, but no further correct work is shown.

[2] Some correct relevant statements about the proof are made, but three or four statements and/or reasons are missing or are incorrect.

[1] Only one correct statement and reason are written, other than the given and/or the prove statements.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
(34) [6] A correct graph is drawn, 90 and 45, and appropriate work is shown.

[5] Appropriate work is shown to answer all three parts of the question, but one computational or graphing error is made.

[4] Appropriate work is shown, but two or more computational or graphing errors are made.

or

[4] A correct graph is drawn, and 90 or 45, and appropriate work is shown.

[3] Appropriate work is shown, but one conceptual error is made.

or

[3] 90 and 45, and appropriate work is shown, but no graph is drawn.

or

[3] A correct graph is drawn, but no further correct work is shown.

[2] Appropriate work is shown, but one conceptual error and one computational or graphing error are made.

[1] 90 or 45, and appropriate work is shown.

or

[1] 90 and 45, but no work is shown and no graph is drawn.

[0] 90 or 45, but no work is shown.

or

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
Map to Learning Standards

<table>
<thead>
<tr>
<th>Key Ideas</th>
<th>Item Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematical Reasoning</td>
<td>14, 33</td>
</tr>
<tr>
<td>Number and Numeration</td>
<td>26, 30</td>
</tr>
<tr>
<td>Operations</td>
<td>3, 11, 24, 25</td>
</tr>
<tr>
<td>Modeling/Multiple Representation</td>
<td>10, 19, 23, 27, 28, 34</td>
</tr>
<tr>
<td>Measurement</td>
<td>6, 8, 9, 15, 16, 18, 21</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>5, 7, 20, 31</td>
</tr>
<tr>
<td>Patterns/Functions</td>
<td>1, 2, 4, 12, 13, 17, 22, 29, 32</td>
</tr>
</tbody>
</table>

Regents Examination in Mathematics B
January 2008
Chart for Converting Total Test Raw Scores to Final Examination Scores (Scaled Scores)

The Chart for Determining the Final Examination Score for the January 2008 Regents Examination in Mathematics B will be posted on the Department’s web site http://www.emsc.nysed.gov/osa/ on Friday, January 25, 2008. Conversion charts provided for the previous administrations of the Regents Examination in Mathematics B must NOT be used to determine students’ final scores for this administration.

Submitting Teacher Evaluations of the Test to the Department

Suggestions and feedback from teachers provide an important contribution to the test development process. The Department provides an online evaluation form for State assessments. It contains spaces for teachers to respond to several specific questions and to make suggestions. Instructions for completing the evaluation form are as follows:

2. Select the test title.
3. Complete the required demographic fields.
4. Complete each evaluation question and provide comments in the space provided.
5. Click the SUBMIT button at the bottom of the page to submit the completed form.