The following procedures are to be followed for scoring student answer papers for the Mathematics B examination. More detailed information about scoring is provided in the publication Information Booklet for Scoring the Regents Examinations in Mathematics A and Mathematics B.

Use only red ink or red pencil in rating Regents papers. Do not attempt to correct the student’s work by making insertions or changes of any kind. Use check marks to indicate student errors.

Unless otherwise specified, mathematically correct variations in the answers will be allowed. Units need not be given when the wording of the questions allows such omissions.

Each student’s answer paper is to be scored by a minimum of three mathematics teachers. On the back of the student’s detachable answer sheet, raters must enter their initials in the boxes next to the questions they have scored and also write their name in the box under the heading “Rater’s/Scorer’s Name.”

Raters should record the student’s scores for all questions and the total raw score on the student’s detachable answer sheet. Then the student’s total raw score should be converted to a scaled score by using the conversion chart that will be posted on the Department’s web site http://www.emsc.nysed.gov/osa/ on Thursday, June 19, 2008. The student’s scaled score should be entered in the box provided on the student’s detachable answer sheet. The scaled score is the student’s final examination score.

Part I

Allow a total of 40 credits, 2 credits for each of the following. Allow credit if the student has written the correct answer instead of the numeral 1, 2, 3, or 4.

(1) 3 (6) 3 (11) 1 (16) 3
(2) 2 (7) 4 (12) 1 (17) 3
(3) 3 (8) 3 (13) 4 (18) 3
(4) 3 (9) 3 (14) 2 (19) 4
(5) 4 (10) 4 (15) 4 (20) 2
General Rules for Applying Mathematics Rubrics

I. General Principles for Rating

The rubrics for the constructed-response questions on the Regents Examinations in Mathematics A and Mathematics B are designed to provide a systematic, consistent method for awarding credit. The rubrics are not to be considered all-inclusive; it is impossible to anticipate all the different methods that students might use to solve a given problem. Each response must be rated carefully using the teacher’s professional judgment and knowledge of mathematics; all calculations must be checked. The specific rubrics for each question must be applied consistently to all responses. In cases that are not specifically addressed in the rubrics, raters must follow the general rating guidelines in the publication Information Booklet for Scoring the Regents Examinations in Mathematics A and Mathematics B, use their own professional judgment, confer with other mathematics teachers, and/or contact the consultants at the State Education Department for guidance. During each Regents examination administration period, rating questions may be referred directly to the Education Department. The contact numbers are sent to all schools before each administration period.

II. Full-Credit Responses

A full-credit response provides a complete and correct answer to all parts of the question. Sufficient work is shown to enable the rater to determine how the student arrived at the correct answer.

When the rubric for the full-credit response includes one or more examples of an acceptable method for solving the question (usually introduced by the phrase “such as”), it does not mean that there are no additional acceptable methods of arriving at the correct answer. Unless otherwise specified, mathematically correct alternative solutions should be awarded credit. The only exceptions are those questions that specify the type of solution that must be used; e.g., an algebraic solution or a graphic solution. A correct solution using a method other than the one specified is awarded half the credit of a correct solution using the specified method.

III. Appropriate Work

Full-Credit Responses: The directions in the examination booklet for all the constructed-response questions state: “Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, charts, etc.” The student has the responsibility of providing the correct answer and showing how that answer was obtained. The student must “construct” the response; the teacher should not have to search through a group of seemingly random calculations scribbled on the student paper to ascertain what method the student may have used.

Responses With Errors: Rubrics that state “Appropriate work is shown, but…” are intended to be used with solutions that show an essentially complete response to the question but contain certain types of errors, whether computational, rounding, graphing, or conceptual. If the response is incomplete, i.e., an equation is written but not solved or an equation is solved but not all of the parts of the question are answered, appropriate work has not been shown. Other rubrics address incomplete responses.

IV. Multiple Errors

Computational Errors, Graphing Errors, and Rounding Errors: Each of these types of errors results in a 1-credit deduction. Any combination of two of these types of errors results in a 2-credit deduction. No more than 2 credits should be deducted for such mechanical errors in any response. The teacher must carefully review the student’s work to determine what errors were made and what type of errors they were.

Conceptual Errors: A conceptual error involves a more serious lack of knowledge or procedure. Examples of conceptual errors include using the incorrect formula for the area of a figure, choosing the incorrect trigonometric function, or multiplying the exponents instead of adding them when multiplying terms with exponents. A response with one conceptual error can receive no more than half credit.

If a response shows repeated occurrences of the same conceptual error, the student should not be penalized twice. If the same conceptual error is repeated in responses to other questions, credit should be deducted in each response.

If a response shows two (or more) different major conceptual errors, it should be considered completely incorrect and receive no credit.

If a response shows one conceptual error and one computational, graphing, or rounding error, the teacher must award credit that takes into account both errors; i.e., awarding half credit for the conceptual error and deducting 1 credit for each mechanical error (maximum of two deductions for mechanical errors).
Part II

For each question, use the specific criteria to award a maximum of two credits. Unless otherwise specified, mathematically correct alternative solutions should be awarded appropriate credit.

(21) [2] A correct graph of \(f(x) \) for \(x < 0 \) is drawn.

[1] One conceptual error is made, such as reflecting \(f(x) \) over an axis.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.

(22) [2] 20, and appropriate work is shown, such as finding the turning point or sketching the graph of the equation.

[1] Appropriate work is shown, but one computational or graphing error is made.

\[\text{or} \]

[1] Appropriate work is shown, but one conceptual error is made.

\[\text{or} \]

[1] The graph of the equation is sketched correctly, but no further correct work is shown.

\[\text{or} \]

[1] \((20,1600) \) is identified as the turning point, but the number of workers is not stated.

\[\text{or} \]

[1] 20, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
(23) [2] \(\frac{x + 3}{3} \), and appropriate work is shown.

[1] Appropriate work is shown, but one computational error is made.

or

[1] Appropriate work is shown, but one conceptual error is made.

or

[1] \(\frac{x + 3}{3} \), but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.

(24) [2] The slopes of \(\overline{RA} \) and \(\overline{PT} \) are calculated correctly, and appropriate work is shown, and the statement is made that since their slopes are equal, the lines are parallel.

[1] Appropriate work is shown, but one computational error is made.

or

[1] Appropriate work is shown, but one conceptual error is made.

or

[1] Appropriate work is shown, and the slopes are shown to be equal, but no concluding statement is written.

[0] A statement is written that lines with equal slopes are parallel, but no work is shown.

or

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
(25) [2] 204.9, and appropriate work is shown.

[1] Appropriate work is shown, but one computational or rounding error is made.

or

[1] Appropriate work is shown, but one conceptual error is made.

or

[1] 204.9, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.

(26) [2] 115, and appropriate work is shown.

[1] Appropriate work is shown, but one computational error is made.

or

[1] Appropriate work is shown, but one conceptual error is made.

or

[1] 115, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
Part III

For each question, use the specific criteria to award a maximum of four credits. Unless otherwise specified, mathematically correct alternative solutions should be awarded appropriate credit.

(27) [4] \(y = 4.194(1.068)^x \) and 112.5, and appropriate work is shown.

[3] Appropriate work is shown, but one computational or rounding error is made.

\[\text{or} \]

[3] \(y = 4.194(1.068)^x \) and 112.5, but no substitution is shown.

\[\text{or} \]

[3] The expression 4.194(1.068)^x is written and 112.5, and appropriate substitution is shown.

[2] Appropriate work is shown, but two or more computational or rounding errors are made.

\[\text{or} \]

[2] Appropriate work is shown, but one conceptual error is made.

\[\text{or} \]

[2] \(y = 4.194(1.068)^x \), but no further correct work is shown.

\[\text{or} \]

[1] Appropriate work is shown, but one conceptual error and one computational or rounding error are made.

\[\text{or} \]

[1] An incorrect regression equation of a lesser degree of difficulty is solved appropriately.

\[\text{or} \]

[1] The expression 4.194(1.068)^x is written and 112.5, but no work is shown.

\[\text{or} \]

[1] 112.5, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
[4] 8, and appropriate work is shown, such as solving the proportion \(\frac{10 + x}{12} = \frac{12}{x} \).

[3] Appropriate work is shown, but one computational error is made.

[2] Appropriate work is shown, but two or more computational errors are made.

or

[2] Appropriate work is shown, but one conceptual error is made.

or

[2] The proportion \(\frac{10 + x}{12} = \frac{12}{x} \) is written, but no further correct work is shown.

[1] Appropriate work is shown, but one conceptual error and one computational error are made.

or

[1] 8, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
(29)

[4] 90, 221.81, and 318.19, and appropriate work is shown, such as solving the equation \(3 \sin^2 \theta - \sin \theta - 2 = 0 \).

[3] Appropriate work is shown, but one computational or rounding error is made.

or

[3] The equation is solved correctly for \(\theta \), but only one or two of the solutions are found.

[2] Appropriate work is shown, but two or more computational or rounding errors are made.

or

[2] Appropriate work is shown, but one conceptual error is made.

or

[2] 90, 221.81, and 318.19, and appropriate work is shown, but a graphic method is used.

or

[2] Appropriate work is shown to find the values of \(\sin \theta \), but no further correct work is shown.

[1] Appropriate work is shown, but one conceptual error and one computational or rounding error are made.

or

[1] A correct quadratic equation in standard form is written, but no further correct work is shown.

or

[1] 90, 221.81, and 318.19, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
(30) \[.8503056 \text{ or an equivalent answer, and appropriate work is shown, such as } \sum C_6(.9)^6(.1)^1 + \sum C_7(.9)^7(.1)^0. \]

[3] Appropriate work is shown, but one computational or rounding error is made.

\textit{or}\n
[3] The two individual probabilities are calculated correctly, but they are not added.

[2] Appropriate work is shown, but two or more computational or rounding errors are made.

\textit{or}\n
[2] Appropriate work is shown, but one conceptual error is made, such as finding the probability of at most 6 days.

\textit{or}\n
[2] The expression \[\sum C_6(.9)^6(.1)^1 + \sum C_7(.9)^7(.1)^0 \] is written, but no further correct work is shown.

[1] Appropriate work is shown, but one conceptual error and one computational or rounding error are made.

\textit{or}\n
[1] Appropriate work is shown to find \(.3720087\), the probability of exactly 6 days, but no further correct work is shown.

\textit{or}\n
[1] \(.8503056\) or an equivalent answer, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
(31) [4] (–8,4) and 18, and appropriate work is shown.

[3] Appropriate work is shown, but one computational error is made.

[2] Appropriate work is shown, but two or more computational errors are made.

or

[2] Appropriate work is shown, but one conceptual error is made, such as using an incorrect dilation.

or

[2] The center and radius are found appropriately for an incorrect center and radius of the original equation.

or

[2] (–8,4), and appropriate work is shown, but no further correct work is shown.

[1] Appropriate work is shown, but one conceptual error and one computational error are made.

or

[1] 18, and appropriate work is shown, but no further correct work is shown.

or

[1] (–8,4) and 18, but no work is shown.

[0] (–8,4) or 18, but no work is shown.

or

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
(32) [4] The graph of \(y = 3 \sin 2x \) or the graph of \(y = -3 \sin 2x \) is drawn.

[3] Appropriate work is shown, but one graphing error is made, such as not drawing the graph over the entire interval.

[2] Appropriate work is shown, but two or more graphing errors are made.

or

[2] Appropriate work is shown, but one conceptual error is made, such as graphing \(y = \sin 2x \) or \(y = 3 \sin x \).

[1] Appropriate work is shown, but one conceptual error and one graphing error are made.

or

[1] The equation \(y = 3 \sin 2x \) or \(y = -3 \sin 2x \) is written, but no graph is drawn.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
For each question, use the specific criteria to award a maximum of six credits. Unless otherwise specified, mathematically correct alternative solutions should be awarded appropriate credit.

1. The equation \(\log_3(x - 2) = 2 \) is written, but no further correct work is shown.

2. Appropriate work is shown, but one conceptual error and one computational error are made.

 or

3. The equation \(x^2 - 9x - 22 = 0 \) is written, but no further correct work is shown.

4. Appropriate work is shown, but two or more computational errors are made.

5. Appropriate work is shown, but one conceptual error is made.

 or

6. Appropriate work is shown, but one computational error is made.

7. Appropriate work is shown, but one computational error is made.

8. The given equation is solved correctly for \(x \), but the extraneous root is not rejected.

9. Appropriate work is shown, but one computational error is made.

10. Appropriate work is shown, but two or more computational errors are made.

11. 11, and appropriate work is shown.

12. A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
[6] 56.4 and 79, and appropriate work is shown, such as using the Law of Sines and then the Law of Cosines or the Law of Sines.

[5] Appropriate work is shown, but one computational or rounding error is made.

or

[5] Appropriate work is shown, and the angle between the resultant and the 50-pound force is found to be 24.4 and the force is found to be 79, but the angle between the original forces is not stated.

[4] Appropriate work is shown, but two or more computational or rounding errors are made.

[3] Appropriate work is shown, but one conceptual error is made.

or

[3] Appropriate work is shown to find 56.4, but no further correct work is shown.

[2] Appropriate work is shown, but one conceptual error and one computational or rounding error are made.

or

[2] Appropriate work is shown to find 24.4, but no further correct work is shown.

or

[2] 56.4 and 79, but no work is shown.

[1] A complete and correctly labeled diagram is drawn to illustrate the problem, but no further correct work is shown.

or

[1] 56.4 or 79, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
Map to Learning Standards

<table>
<thead>
<tr>
<th>Key Ideas</th>
<th>Item Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematical Reasoning</td>
<td>11, 24</td>
</tr>
<tr>
<td>Number and Numeration</td>
<td>13, 19, 20, 23</td>
</tr>
<tr>
<td>Operations</td>
<td>9, 10, 16, 21</td>
</tr>
<tr>
<td>Modeling/Multiple Representation</td>
<td>3, 5, 14, 15, 22, 32, 34</td>
</tr>
<tr>
<td>Measurement</td>
<td>2, 17, 18, 25, 26, 28</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>4, 7, 27, 30</td>
</tr>
<tr>
<td>Patterns/Functions</td>
<td>1, 6, 8, 12, 29, 31, 33</td>
</tr>
</tbody>
</table>

Regents Examination in Mathematics B
June 2008
Chart for Converting Total Test Raw Scores to Final Examination Scores (Scaled Scores)

The Chart for Determining the Final Examination Score for the June 2008 Regents Examination in Mathematics B will be posted on the Department’s website http://www.emsc.nysed.gov/osa/ on Thursday, June 19, 2008. Conversion charts provided for the previous administrations of the Regents Examination in Mathematics B must NOT be used to determine students’ final scores for this administration.

Submitting Teacher Evaluations of the Test to the Department

Suggestions and feedback from teachers provide an important contribution to the test development process. The Department provides an online evaluation form for State assessments. It contains spaces for teachers to respond to several specific questions and to make suggestions. Instructions for completing the evaluation form are as follows:

2. Select the test title.
3. Complete the required demographic fields.
4. Complete each evaluation question and provide comments in the space provided.
5. Click the SUBMIT button at the bottom of the page to submit the completed form.