The following procedures are to be followed for scoring student answer papers for the Mathematics B examination. More detailed information about scoring is provided in the publication Information Booklet for Scoring the Regents Examinations in Mathematics A and Mathematics B.

Use only red ink or red pencil in rating Regents papers. Do not attempt to correct the student’s work by making insertions or changes of any kind. Use check marks to indicate student errors.

Unless otherwise specified, mathematically correct variations in the answers will be allowed. Units need not be given when the wording of the questions allows such omissions.

Each student’s answer paper is to be scored by a minimum of three mathematics teachers. On the back of the student’s detachable answer sheet, raters must enter their initials in the boxes next to the questions they have scored and also write their name in the box under the heading “Rater’s/Scorer’s Name.”

Raters should record the student’s scores for all questions and the total raw score on the student’s detachable answer sheet. Then the student’s total raw score should be converted to a scaled score by using the conversion chart that will be posted on the Department’s web site http://www.emsc.nysed.gov/osa/ on Wednesday, August 13, 2008. The student’s scaled score should be entered in the box provided on the student’s detachable answer sheet. The scaled score is the student’s final examination score.

Part I

Allow a total of 40 credits, 2 credits for each of the following. Allow credit if the student has written the correct answer instead of the numeral 1, 2, 3, or 4.

(1) 2 (6) 1 (11) 1 (16) 3
(2) 2 (7) 3 (12) 4 (17) 2
(3) 1 (8) 3 (13) 2 (18) 3
(4) 3 (9) 4 (14) 4 (19) 4
(5) 1 (10) 1 (15) 3 (20) 2
General Rules for Applying Mathematics Rubrics

I. General Principles for Rating

The rubrics for the constructed-response questions on the Regents Examinations in Mathematics A and Mathematics B are designed to provide a systematic, consistent method for awarding credit. The rubrics are not to be considered all-inclusive; it is impossible to anticipate all the different methods that students might use to solve a given problem. Each response must be rated carefully using the teacher’s professional judgment and knowledge of mathematics; all calculations must be checked. The specific rubrics for each question must be applied consistently to all responses. In cases that are not specifically addressed in the rubrics, raters must follow the general rating guidelines in the publication Information Booklet for Scoring the Regents Examinations in Mathematics A and Mathematics B, use their own professional judgment, confer with other mathematics teachers, and/or contact the consultants at the State Education Department for guidance. During each Regents examination administration period, rating questions may be referred directly to the Education Department. The contact numbers are sent to all schools before each administration period.

II. Full-Credit Responses

A full-credit response provides a complete and correct answer to all parts of the question. Sufficient work is shown to enable the rater to determine how the student arrived at the correct answer.

When the rubric for the full-credit response includes one or more examples of an acceptable method for solving the question (usually introduced by the phrase “such as”), it does not mean that there are no additional acceptable methods of arriving at the correct answer. Unless otherwise specified, mathematically correct alternative solutions should be awarded credit. The only exceptions are those questions that specify the type of solution that must be used; e.g., an algebraic solution or a graphic solution. A correct solution using a method other than the one specified is awarded half the credit of a correct solution using the specified method.

III. Appropriate Work

Full-Credit Responses: The directions in the examination booklet for all the constructed-response questions state: “Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, charts, etc.” The student has the responsibility of providing the correct answer and showing how that answer was obtained. The student must “construct” the response; the teacher should not have to search through a group of seemingly random calculations scribbled on the student paper to ascertain what method the student may have used.

Responses With Errors: Rubrics that state “Appropriate work is shown, but …” are intended to be used with solutions that show an essentially complete response to the question but contain certain types of errors, whether computational, rounding, graphing, or conceptual. If the response is incomplete, i.e., an equation is written but not solved or an equation is solved but not all of the parts of the question are answered, appropriate work has not been shown. Other rubrics address incomplete responses.

IV. Multiple Errors

Computational Errors, Graphing Errors, and Rounding Errors: Each of these types of errors results in a 1-credit deduction. Any combination of two of these types of errors results in a 2-credit deduction. No more than 2 credits should be deducted for such mechanical errors in any response. The teacher must carefully review the student’s work to determine what errors were made and what type of errors they were.

Conceptual Errors: A conceptual error involves a more serious lack of knowledge or procedure. Examples of conceptual errors include using the incorrect formula for the area of a figure, choosing the incorrect trigonometric function, or multiplying the exponents instead of adding them when multiplying terms with exponents. A response with one conceptual error can receive no more than half credit.

If a response shows repeated occurrences of the same conceptual error, the student should not be penalized twice. If the same conceptual error is repeated in responses to other questions, credit should be deducted in each response.

If a response shows two (or more) different major conceptual errors, it should be considered completely incorrect and receive no credit.

If a response shows one conceptual error and one computational, graphing, or rounding error, the teacher must award credit that takes into account both errors; i.e., awarding half credit for the conceptual error and deducting 1 credit for each mechanical error (maximum of two deductions for mechanical errors).
Part II

For each question, use the specific criteria to award a maximum of two credits. Unless otherwise specified, mathematically correct alternative solutions should be awarded appropriate credit.

(21) [2] 18, and appropriate work is shown, such as an algebraic or a graphic solution or trial and error with at least three trials and appropriate checks.

[1] Appropriate work is shown, but one computational or graphing error is made.

or

[1] Appropriate work is shown, but one conceptual error is made.

or

[1] The trial-and-error method is used and at least six systematic trials and appropriate checks are shown, but no solution is found.

or

[1] 18, but no work or fewer than three trials with appropriate checks are shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.

(22) [2] $\frac{8}{3}$ and $-\frac{4}{3}$, and appropriate work is shown.

[1] Appropriate work is shown, but one computational error is made.

or

[1] Appropriate work is shown, but one conceptual error is made.

or

[1] $3x - 2 = 6$ and $3x - 2 = -6$, but no further correct work is shown.

or

[1] $\frac{8}{3}$ or $-\frac{4}{3}$, and appropriate work is shown.

or

[1] $\frac{8}{3}$ and $-\frac{4}{3}$, but no work is shown.

[0] $\frac{8}{3}$ or $-\frac{4}{3}$, but no work is shown.

or

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
(23) [2] 42, and appropriate work is shown.

[1] Appropriate work is shown, but one computational error is made.

or

[1] Appropriate work is shown, but one conceptual error is made.

or

[1] 42, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.

(24) [2] \(\frac{1}{x - 1} \), and appropriate work is shown.

[1] Appropriate work is shown, but one computational or factoring error is made.

or

[1] Appropriate work is shown, but one conceptual error is made.

or

[1] \(\frac{1}{x - 1} \), but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.

(25) [2] 5, and appropriate work is shown.

[1] Appropriate work is shown, but one computational or graphing error is made.

or

[1] Appropriate work is shown, but one conceptual error is made.

or

[1] 5, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
Both \(f(x) \) and \(f^{-1}(x) \) are graphed correctly and at least one is labeled.

[1] Appropriate work is shown, but one graphing error is made.

or

[1] Appropriate work is shown, but one conceptual error is made, such as graphing the inverse as a reflection over an axis.

or

[1] \(f(x) \) is graphed incorrectly, but an appropriate graph is drawn for \(f^{-1}(x) \).

or

[1] A correct equation for \(f^{-1}(x) \) is written, but no graphs are drawn.

[0] \(f(x) \) is graphed correctly, but no further correct work is shown.

or

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
(27) [4] \(y = 999.9725(1.0493)^x \) and 1,367, and appropriate work is shown.

[3] Appropriate work is shown, but one computational or rounding error is made.

or

[3] \(y = 999.9725(1.0493)^x \) and 1,367, but no substitution is shown.

or

[3] The expression 999.9725(1.0493)^x is written and 1,367, and an appropriate substitution is shown.

[2] Appropriate work is shown, but two or more computational or rounding errors are made.

or

[2] Appropriate work is shown, but one conceptual error is made.

or

or

[2] \(y = 999.9725(1.0493)^x \), but no further correct work is shown.

[1] Appropriate work is shown, but one conceptual error and one computational or rounding error are made.

or

[1] The expression 999.9725(1.0493)^x is written, but no further correct work is shown.

or

[1] An incorrect equation of a lesser degree of difficulty is solved appropriately.

or

[1] 1,367, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
(28) [4] 116, and appropriate work is shown, such as the use of the Law of Cosines.

[3] Appropriate work is shown, but one computational or rounding error is made.

[2] Appropriate work is shown, but two or more computational or rounding errors are made.

or

[2] Appropriate work is shown, but one conceptual error is made.

or

[2] Correct substitution is made into the Law of Cosines, but no further correct work is shown.

[1] Appropriate work is shown, but one conceptual error and one computational or rounding error are made.

or

[1] A complete and correctly labeled diagram is drawn, but no further correct work is shown.

or

[1] 116, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
(29) [4] 287,457, and appropriate work is shown, such as using trigonometry and the area formula or the Law of Sines and the area formula.

[3] Appropriate work is shown, but one computational or rounding error is made.

[2] Appropriate work is shown, but two or more computational or rounding errors are made.

or

[2] Appropriate work is shown, but one conceptual error is made, such as using an incorrect trigonometric function.

[1] Appropriate work is shown, but one conceptual error and one computational or rounding error are made.

or

[1] The length of the altitude or the length of a leg is found correctly, but no further correct work is shown.

or

[1] Correct substitutions are made into the Law of Sines, but no further correct work is shown.

or

[1] 287,457, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
(30) [4] .994, and appropriate work is shown.

[3] Appropriate work is shown, but one computational or rounding error is made.

 or

[3] The probabilities are calculated correctly, but they are not added.

[2] Appropriate work is shown, but two or more computational or rounding errors are made.

 or

[2] Appropriate work is shown, but one conceptual error is made, such as finding the probability of at most three flights will be on time.

[1] Appropriate work is shown, but one conceptual error and one computational or rounding error are made.

 or

[1] Appropriate work is shown to find exactly three flights will be on time.

 or

[1] .994, but no work is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
(31) \[4\] (2,300) and (–3,240), and appropriate algebraic work is shown.

\[3\] Appropriate work is shown, but one computational or factoring error is made.

or

\[3\] The \(x\)-values of 2 and –3 are found correctly, but only one \(y\)-value is found correctly.

\[2\] Appropriate work is shown, but two or more computational or factoring errors are made.

or

\[2\] Appropriate work is shown, but one conceptual error is made.

or

\[2\] The \(x\)-values of 2 and –3 are found correctly, but no further correct work is shown.

or

\[2\] (2,300) or (–3,240), and appropriate algebraic work is shown.

or

\[2\] (2,300) and (–3,240), but a method other than an algebraic solution is used.

\[1\] Appropriate work is shown, but one conceptual error and one computational or factoring error are made.

or

\[1\] A method other than an algebraic solution is used, and one error is made.

or

\[1\] (2,300) and (–3,240), but no work is shown.

\[0\] (2,300) or (–3,240), but no work is shown.

or

\[0\] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
11.6, and appropriate work is shown, such as the use of logarithms, graphing, or trial and error with at least three trials and appropriate checks.

[3] Appropriate work is shown, but one computational, rounding, or graphing error is made.

[2] Appropriate work is shown, but two or more computational, rounding, or graphing errors are made.

or

[2] Appropriate work is shown, but one conceptual error is made.

or

[2] The trial-and-error method is used to find the correct solution, but only two trials and appropriate checks are shown.

or

[2] The trial-and-error method is attempted, and at least six systematic trials and appropriate checks are shown, but no solution is found.

or

[2] A correct logarithmic equation is written, but no further correct work is shown.

[1] Appropriate work is shown, but one conceptual error and one computational, rounding, or graphing error are made.

or

[1] A correct substitution is made into the compound interest formula, but no further correct work is shown.

or

[1] A correct graph is drawn, but no further correct work is shown.

or

[1] 11.6, but no work or only one trial with an appropriate check is shown.

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
MATHEMATICS B – continued

Part IV

For each question, use the specific criteria to award a maximum of six credits. Unless otherwise specified, mathematically correct alternative solutions should be awarded appropriate credit.

(33) [6] 0, 146, and 214, and appropriate work is shown.

[5] Appropriate work is shown, but one computational, rounding, factoring, or graphing error is made.

or

[5] Appropriate work is shown, and the equation is solved for 0 and 146, but 214 is not found.

or

[5] Appropriate work is shown to find the correct solutions, but 360 is included.

[4] Appropriate work is shown, but two or more computational, rounding, factoring, or graphing errors are made.

or

[4] Appropriate work is shown, but the equation is solved for 0, 146, and 360.

[3] Appropriate work is shown, but one conceptual error is made.

or

[3] Appropriate work is shown, and the equation is factored correctly, but no further correct work is shown.

[2] Appropriate work is shown, but one conceptual error and one computational, rounding, factoring, or graphing error are made.

or

[2] 6 \cos^2 x – \cos x – 5 = 0 is written, but no further correct work is shown.

[1] 2 \cos^2 x – 1 is substituted for \cos 2x, but no further correct work is shown.

or

[1] 0, 146, and 214, but no work is shown.

[0] 0 or 146 or 214, but no work is shown.

or

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
(34) [6] A complete and correct proof is written.

[5] $\triangle BAM \cong \triangle CDM$ is proven, but no further correct work is shown.

or

[5] A proof is written that demonstrates a thorough understanding of the method of proof and contains no conceptual errors, but one statement and/or reason is missing or is incorrect.

[4] A proof is written that demonstrates a good understanding of the method of proof and contains no conceptual errors, but two statements and/or reasons are missing or are incorrect.

[3] A proof is written that demonstrates a good understanding of the method of proof, but one conceptual error is made.

[2] Some correct relevant statements about the proof are made, but three or four statements and/or reasons are missing or are incorrect.

[1] Only one correct statement and reason are written.

[0] The “given” and/or the “prove” statements are rewritten in the style of a formal proof, but no further correct relevant statements are written.

or

[0] A zero response is completely incorrect, irrelevant, or incoherent or is a correct response that was obtained by an obviously incorrect procedure.
Map to Learning Standards

<table>
<thead>
<tr>
<th>Key Ideas</th>
<th>Item Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematical Reasoning</td>
<td>33</td>
</tr>
<tr>
<td>Number and Numeration</td>
<td>14, 17, 25</td>
</tr>
<tr>
<td>Operations</td>
<td>1, 5</td>
</tr>
<tr>
<td>Modeling/Multiple Representation</td>
<td>4, 7, 9, 11, 20, 24, 31, 32</td>
</tr>
<tr>
<td>Measurement</td>
<td>2, 3, 15, 16, 26, 28, 29</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>8, 23, 27, 30</td>
</tr>
<tr>
<td>Patterns/Functions</td>
<td>6, 10, 12, 13, 18, 19, 21, 22, 34</td>
</tr>
</tbody>
</table>

Regents Examination in Mathematics B
August 2008
Chart for Converting Total Test Raw Scores to Final Examination Scores (Scaled Scores)

The Chart for Determining the Final Examination Score for the August 2008 Regents Examination in Mathematics B will be posted on the Department’s web site http://www.emsc.nysed.gov/osa/ on Wednesday, August 13, 2008. Conversion charts provided for the previous administrations of the Regents Examination in Mathematics B must NOT be used to determine students’ final scores for this administration.

Submitting Teacher Evaluations of the Test to the Department

Suggestions and feedback from teachers provide an important contribution to the test development process. The Department provides an online evaluation form for State assessments. It contains spaces for teachers to respond to several specific questions and to make suggestions. Instructions for completing the evaluation form are as follows:

2. Select the test title.
3. Complete the required demographic fields.
4. Complete each evaluation question and provide comments in the space provided.
5. Click the SUBMIT button at the bottom of the page to submit the completed form.