The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION

# ALGEBRA 2/ TRIGONOMETRY

Wednesday, January 25, 2017 — 1:15 – 4:15 p.m.

## SAMPLE RESPONSE SET

#### **Table of Contents**

| Question 28            |
|------------------------|
| Question 29 8          |
| Question $30 \dots 15$ |
| Question 31            |
| Question 32            |
| Question 33            |
| Question $34 \dots 41$ |
| Question 35            |
| Question 36            |
| Question 37 60         |
| Question 38            |
| Question 39            |
|                        |

**28** The number of bacteria that grow in a petri dish is approximated by the function  $G(t) = 500e^{0.216t}$ , where *t* is time, in minutes. Use this model to approximate, to the *nearest integer*, the number of bacteria present after one half-hour.

G(30)=500e<sup>(-216)(30)</sup> 500e<sup>(16-43)</sup> 560(651.9709463 325985.4732 325985

**Score 2:** The student gave a complete and correct response.

**28** The number of bacteria that grow in a petri dish is approximated by the function  $G(t) = 500e^{0.216t}$ , where *t* is time, in minutes. Use this model to approximate, to the *nearest integer*, the number of bacteria present after one half-hour. G = 500 e (0.216.30) = 325986 The student made a rounding error. Score 1:

Algebra 2/Trigonometry – Jan. '17

**28** The number of bacteria that grow in a petri dish is approximated by the function  $G(t) = 500e^{0.216t}$ , where *t* is time, in minutes. Use this model to approximate, to the *nearest integer*, the number of bacteria present after one half-hour.

 $G = 500e^{0.216(0.5)}$ = 500e^{0.108} = 557

**Score 1:** The student made an error by using 0.5.



**28** The number of bacteria that grow in a petri dish is approximated by the function  $G(t) = 500e^{0.216t}$ , where *t* is time, in minutes. Use this model to approximate, to the *nearest integer*, the number of bacteria present after one half-hour.

(j(30) = 500e<sup>2/6×30</sup> = 186/6.5 = 18617

Score 1: The student correctly substituted into the function, but did not use 30 as an exponent.

**28** The number of bacteria that grow in a petri dish is approximated by the function  $G(t) = 500e^{0.216t}$ , where *t* is time, in minutes. Use this model to approximate, to the *nearest integer*, the number of bacteria present after one half-hour.

 $G(30) = 500e^{-246(30)}$   $\frac{G(30)}{30} = \frac{325985.4731}{30}$  G = 10866.18244

Score 0: The student made an error by dividing by 30 and did not round properly.





Algebra 2/Trigonometry – Jan. '17







**29** Determine the exact value of  $\left(\frac{27}{64}\right)^{-\frac{2}{3}}$  as a fraction in simplest form.  $(0.47875)^{-5} = 1.7$ Score 1: The student did not write the answer in fraction form.

















**31** Express  $\frac{12x^{-5}y^5}{24x^{-3}y^{-2}}$  in simplest form, using only positive exponents.  $\frac{1^{2}Y^{5}}{x^{5}} = \frac{Y^{7}}{2x^{2}}$ 12 x 2 Score 2: The student gave a complete and correct response.

**31** Express  $\frac{12x^{-5}y^5}{24x^{-3}y^{-2}}$  in simplest form, using only positive exponents. + 2 x 2 Score 2: The student gave a complete and correct response.

**31** Express  $\frac{12x^{-5}y^5}{24x^{-3}y^{-2}}$  in simplest form, using only positive exponents. Score 2: The student gave a complete and correct response.



Г

| <b>31</b> Expres | as $\frac{12x^{-5}y^5}{24x^{-3}y^{-2}}$ in simplest form, using only positive exponents. |
|------------------|------------------------------------------------------------------------------------------|
|                  | 12 x 3 5 2<br>5                                                                          |
|                  | $24 x^{3} y^{7}$<br>$\frac{x^{3} y^{7}}{5}$                                              |
|                  | 22.                                                                                      |
|                  |                                                                                          |
| Score 1:         | The student did not simplify completely.                                                 |
|                  |                                                                                          |



32 In a theater with 30 rows, the number of seats in a row increases by two with each successive row. The front row has 15 seats. Find the total seating capacity of the theater. an = atd(n-1)  $s_n = \frac{n(a_1 + a_n)}{a}$ an= 16+2 (30-1) an= 15+2(29) an = 73  $8n = \frac{30(15+73)}{2}$  $Sn = \frac{30 (88)}{2}$ Sn = 1320

**Score 2:** The student gave a complete and correct response.

32 In a theater with 30 rows, the number of seats in a row increases by two with each successive row. The front row has 15 seats. Find the total seating capacity of the theater. n(2a, +(n-1)d)30 (2 (15) + 29 (2) 30 1320 The student gave a complete and correct response. Score 2:

| 150000              |                 |                  | 1           |       |  |
|---------------------|-----------------|------------------|-------------|-------|--|
| 210000              |                 | TUTUTU           | סתו         |       |  |
| 230000              |                 |                  |             |       |  |
| 2700 00             | mant mm .       |                  |             |       |  |
| 330000              |                 | 8888889          |             |       |  |
| 37-EI<br>39 D       |                 |                  |             |       |  |
| 411                 |                 |                  |             |       |  |
| 480<br>450<br>470   | 1320 8          | eats in th       | re movie th | eater |  |
| 410                 |                 |                  |             |       |  |
| 530                 |                 |                  |             |       |  |
| 550<br>570          |                 |                  |             |       |  |
| 590                 |                 |                  |             |       |  |
| 63 EL<br>65 EL      |                 |                  |             |       |  |
| 6<br>G              |                 |                  |             |       |  |
| 210<br>730          |                 |                  |             |       |  |
| 3-                  |                 |                  |             |       |  |
|                     |                 |                  |             |       |  |
| Score 2: The studen | t gave a comple | te and correct r | esponse.    |       |  |

30 rows 15,17,19,21,23,25 27, 29, 31, 33, 35, 37 39,41,48,45,47,51 53,55,57,59,61, 63,65,67,69,71, 13,75 = 1395 Score 1: The student did not list 49, but used it to find the sum, plus the 75. [31] Algebra 2/Trigonometry - Jan. '17

**32** In a theater with 30 rows, the number of seats in a row increases by two with each successive row. The front row has 15 seats. Find the total seating capacity of the theater.

32 In a theater with 30 rows, the number of seats in a row increases by two with each successive row. The front row has 15 seats. Find the total seating capacity of the theater.  $S_n = \frac{n(q_1 + q_n)}{2}$  $S_n = 30(15 + 30)$ 1350 5,=675 Sects The student used 30 rows instead of 73 seats in row 30 when using the formula. Score 1:

**32** In a theater with 30 rows, the number of seats in a row increases by two with each successive row. The front row has 15 seats. Find the total seating capacity of the theater.

 $a_{30} = 15 \pm 2(29)$   $15 \pm 52^{2}$   $a_{30} = 72^{2}$ 

**Score 1:** The student calculated the number of seats in the last row, but did not calculate the total seating capacity.

**32** In a theater with 30 rows, the number of seats in a row increases by two with each successive row. The front row has 15 seats. Find the total seating capacity of the theater.

$$\begin{array}{c} a_{1} = 15 \\ a_{30} = 73 \\ a_{n} = a_{1} + (n - 1)(d) \\ a_{30} = 15 + (30 - 1)(g) \\ a_{30} = 15 + 58 \\ a_{30} = 73 \end{array}$$

$$\begin{array}{c} 57 \\ 57 \\ -73 \end{array}$$

$$\begin{array}{c} \overline{57} = n (a_{1} + a_{n}) \\ a_{30} = 30 (16 + 30) \\ a_{30} = 30 (16$$

Score 1: The student calculated 73, the number of seats in row, 30, but used the 30 in the formula.

32 In a theater with 30 rows, the number of seats in a row increases by two with each successive row. The front row has 15 seats. Find the total seating capacity of the theater.  $X = 15(1+.1\overline{3})^{30}$  $X = 15(1.1\overline{3})^{30}$ X = 15(42.72970256)x=640.9455383 X=641 seats

**Score 0:** The student gave a completely incorrect response.

33 Given 
$$f(x) = x^2$$
 and  $g(x) = x - 3$ , express  $g(f(x + 2))$  as a polynomial in simplest form.  
 $x + 2 - -3 - 9$   
 $f(x) = x^3$   
 $f(x - 3) = (x + 3)(x + 3)$   
 $= x^2 + 4x + 4$   
 $x^2 + 4x + 4 - 3$   
 $\overline{x^2 + 4x + 1}$   
Score 2: The student gave a complete and correct response.

**33** Given  $f(x) = x^2$  and g(x) = x - 3, express g(f(x + 2)) as a polynomial in simplest form.  $f(x+2) = (x+2)^{2}$  $g(x+a)^{2} = (x+a)^{2} - 3$  (x+a)(x+a) - 3  $x^{2} + 4x + 4 - 3$   $g(x+a)^{2} = x^{2} + 4x + 1$ Score 2: The student gave a complete and correct response.

**33** Given  $f(x) = x^2$  and g(x) = x - 3, express g(f(x + 2)) as a polynomial in simplest form.  $(x_{12})^2 - 3$  $(x_{12})(x_{12})$  $(x^{2}+2x+2x+4) -3$  $(x^{2}+4x+4) -3$ g(f(x+2)=(x+2)(x+2)-3g(f(x+z)=(x2+4x+4) The student did not express the answer in simplest form. Score 1:

**33** Given  $f(x) = x^2$  and g(x) = x - 3, express g(f(x + 2)) as a polynomial in simplest form.  $f(x+2) = (x+2)^{2}$ = x<sup>2</sup>+4  $g(x^{2}+4) = x^{2}+4-3$ = x<sup>2</sup>+1 The student made an error when squaring x + 2. Score 1:

**33** Given  $f(x) = x^2$  and g(x) = x - 3, express g(f(x + 2)) as a polynomial in simplest form. g(x+2) = x+2-3 = x-1 $f(x-1)^{2} = x^{2}-1$ The student evaluated the expression from left to right and made an error squaring x - 1. Score 0:

**34** Sketch an angle of  $250^{\circ}$  in standard position and then express cos  $250^{\circ}$  as a cosine function of a positive acute angle.



**34** Sketch an angle of  $250^{\circ}$  in standard position and then express  $\cos 250^{\circ}$  as a cosine function of a positive acute angle.







34 Sketch an angle of  $250^{\circ}$  in standard position and then express cos  $250^{\circ}$  as a cosine function of a positive acute angle.





**35** Solve the inequality 
$$x^2 - 3x - 4 > 0$$
 algebraically for x.  

$$(x-4)(x+1) > 0$$

$$(x+1 = 0)$$

$$x > 4$$

$$x^2 - 1$$

$$(x^2 - 1)$$

$$(x^2 - 1)$$

$$(x^2 - 1)$$
Score 2: The student gave a complete and correct response.

35 Solve the inequality 
$$x^2 - 3x - 4 > 0$$
 algebraically for x.  

$$\begin{array}{c}
x^2 - 3 \times -4 = 0 \\
(x - 4)(x + 1) = 0 \\
x = 4 \quad \text{Or} \quad x = -1
\end{array}$$

$$\begin{array}{c}
x - 4 \\
x - 4 \\
x - 4
\end{array}$$
Score 2: The student gave a complete and correct response.



| <b>35</b> Solve the inequality $x^2 - 3x - 4 > 0$ algebraic | cally for <i>x</i> .      |
|-------------------------------------------------------------|---------------------------|
| x=====================================                      |                           |
| $x = -(-3)^{+} \sqrt{(-3)^{2} - 4(1)(-4)}$                  | (x-4)(x+1)<br>x-4=0 x+1=0 |
| 2(1)                                                        | x=4 x=-1                  |
| $X = 3 \pm \sqrt{9 + 16}$                                   |                           |
| X= 3± 525                                                   |                           |
| $X = 3 \pm 5$                                               |                           |
| $x = \frac{3+5}{2} = 4$                                     |                           |
| $x = \frac{3-5}{2} = -1$                                    |                           |
|                                                             |                           |

**Score 0:** The student solved the equation  $x^2 - 3x - 4 = 0$ , but did nothing with the inequality.

| Years Sinc<br>1955 (x)               | <b>e</b> 0 | 5    | 10    | 15                         | 20   | 25    | 30    | 35     | 40      | 45             | 50            |
|--------------------------------------|------------|------|-------|----------------------------|------|-------|-------|--------|---------|----------------|---------------|
| Minimum<br>Wage (y)                  | .75        | 1.00 | 1.25  | 1.45                       | 2.00 | 3.10  | 3.35  | 3.80   | 4.25    | 5.15           | 5.15          |
| Write the linear n<br><i>places.</i> | egression  | - 5  |       | r this :<br>8 <b>X +</b> . |      | data, | round | ing al | l value | es to <u>t</u> | <u>hree</u> a |
| State the strength                   |            |      |       |                            |      |       |       |        |         |                |               |
|                                      |            |      |       |                            |      |       |       |        |         |                |               |
|                                      | hìo        | h r  | posi  | tive                       | 60   | rre   | lat   | ion    |         |                |               |
|                                      | hìo        | h r  | posi  | tive                       | 0    | rre   | lat   | ion    |         |                |               |
|                                      | hìo        | h r  | josi. | tive                       | 0)   | rre   | lat   | ion    |         |                |               |
|                                      | hìo        | h r  | jozi. | tive                       | 0)   | rre   | lat   | ion    |         |                |               |
| <b>re 4:</b> The stude               |            |      |       |                            |      |       |       | ion    |         |                |               |

| 19                      | rs Since<br>955 (x) | 0            | 5       | 5 10          | 15              | 20          | 25            | 30            | 35     | 40      | 45             | 50      |
|-------------------------|---------------------|--------------|---------|---------------|-----------------|-------------|---------------|---------------|--------|---------|----------------|---------|
| Mi                      | nimum<br>age (y)    | .75          | 1.00    | 1.25          | 1.45            | 2.00        | 3.10          | 3.35          | 3.80   | 4.25    | 5.15           | 5.15    |
|                         | linear regr         | ession       | equati  | ion foi       | r this :        | set of      | data,         | round         | ing al | l value | es to <i>t</i> | hree de |
| laces.                  |                     | 164          | 1       |               |                 | 5           |               | 363           |        |         |                |         |
|                         | 11                  | near         | reg     | ress          | stan =          | 7/4         | =,            | 098           | ) X 1  | 4       | 02             | ]       |
|                         |                     | . 1.         |         | 1.            |                 |             | 1             |               |        |         |                |         |
| 1.542 (5)               | rrength and         |              |         |               | -               |             |               |               |        |         |                |         |
|                         | corrow              |              |         |               |                 |             |               |               |        |         |                |         |
| 15 1                    | pretty              | STO          | ng      | becc          | unch            | +1          | is            | close<br>s th | er th  | o the   | POIN           | ets an  |
| +1                      | - and               | not          |         |               | 0               |             |               | 3 1 1         |        | ~       |                |         |
| +I<br>poin              | ts are              | grap         | red     | in a          | din             | ect         | rela          | tion          | ship   | 5       |                |         |
| +I<br>poin<br>as<br>waa | ts are<br>the ye    | grapi        | red i   | in a<br>creas | l diri          | ect<br>o do | rela<br>es 7  | tion<br>the n | ship   | nam     |                |         |
| + I<br>poin             | ts are<br>the ye    | grapi<br>ars | red i   | in a<br>breas | l din<br>il si  | ect<br>o do | relates 7     | tion<br>the n | ship   | nim     |                |         |
| + I<br>poin             | ts are<br>the ye    | grapi<br>ars | red i   | in a<br>creas | l din<br>ie si  | ect<br>o do | rela<br>26 7  | tion<br>The n | ship   | nam     |                |         |
| + I<br>poin             | ts are<br>the ye    | grapi<br>ars | red i   | in a<br>weas  | dirv<br>Se si   | ect<br>o do | relax<br>26 7 | tion<br>The n | ship   | ram     |                |         |
| poin as                 | ts are<br>the ye    | grapi<br>ars | red inc | in a<br>breas | l dira<br>ie si | ect<br>o do | rela<br>25 7  | tion<br>The n | ship   | nam     |                |         |
| + I<br>poin             | ts are<br>the ye    | grap<br>ars  | red inc | in a<br>breas | dire<br>Se si   | ect<br>o do | relax<br>25 7 | tion<br>The n | ship   | nam     |                |         |

| 3 The ta | able below shows        | the m | inimu | m hou | irly wa | ge, in | U.S. d | ollars, | for se | lected | years | since ] |
|----------|-------------------------|-------|-------|-------|---------|--------|--------|---------|--------|--------|-------|---------|
|          | Years Since<br>1955 (x) | 0     | 5     | 10    | 15      | 20     | 25     | 30      | 35     | 40     | 45    | 50      |
|          | Minimum<br>Wage (y)     | .75   | 1.00  | 1.25  | 1.45    | 2.00   | 3.10   | 3.35    | 3.80   | 4.25   | 5.15  | 5.15    |

Write the linear regression equation for this set of data, rounding all values to <u>three decimal</u> places.

Y=.098x+.402

State the strength and direction indicated by the correlation coefficient.

. The direction is positive and theshengthis 0.988.

**Score 3:** The student did not state the strength of the correlation coefficient appropriately.

| Years Since<br>1955 (x)         | 0         | 5       | 10       | 15        | 20     | 25       | 30      | 35       | 40      | 45      | 50       |
|---------------------------------|-----------|---------|----------|-----------|--------|----------|---------|----------|---------|---------|----------|
| Minimum<br>Wage (y)             | .75       | 1.00    | 1.25     | 1.45      | 2.00   | 3.10     | 3.35    | 3.80     | 4.25    | 5.15    | 5.15     |
|                                 |           |         |          |           |        |          |         | ·        | 1 1     |         | 1        |
| Write the linear reg<br>places. | gression  | equati  | .011 101 | r this :  | set of | data,    | rouna   | ing ai   | i value | es to t | nree aec |
|                                 |           |         |          |           |        |          |         |          |         |         |          |
|                                 |           |         |          |           |        |          |         |          |         |         |          |
| State the strength a            | nd direct | ion inc | licated  | l by th   | e corr | elatior  | n coeff | icient.  |         |         |          |
|                                 |           |         |          | -         |        | ciuciói. |         |          |         |         |          |
|                                 |           | ¥ =     | mx +     | 6<br>.402 |        |          |         | 0.1.1.   | . 1:    | incar   |          |
|                                 | 4= .      | 098     | * + .    | 402       | ÷.,    |          |         | Po Siero | c "     | (m.)    |          |
|                                 | slope &   | J       |          | Y         | 4 -in  | kaspt    |         |          |         |         |          |
|                                 | slope     |         |          |           |        |          |         |          |         |         |          |
|                                 |           |         |          |           |        |          |         |          |         |         |          |
|                                 |           |         |          |           |        |          |         |          |         |         |          |
|                                 |           |         |          |           |        |          |         |          |         |         |          |
|                                 |           |         |          |           |        |          |         |          |         |         |          |
|                                 |           |         |          |           |        |          |         |          |         |         |          |
|                                 |           |         |          |           |        |          |         |          |         |         |          |
|                                 |           |         |          |           |        |          |         |          |         |         |          |
| r <b>e 3:</b> The student       | : did not | state   | the str  | ength     | of the | e corre  | lation  | coeffi   | cient.  |         |          |
|                                 | : did not | state   | the str  | ength     | of the | e corre  | lation  | coeffi   | icient. |         |          |
|                                 | did not   | state   | the str  | ength     | of the | e corre  | lation  | coeffi   | cient.  |         |          |

| 1955 (x)       0       3       10       13       20       23       30       33       40       43       30         Minimum<br>Wage (y)       .75       1.00       1.25       1.45       2.00       3.10       3.35       3.80       4.25       5.15       5.15         rite the linear regression equation for this set of data, rounding all values to three dences.       data       rounding all values to three dences. | Minimum |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
| ate the strength and direction indicated by the correlation coefficient.<br>$ \begin{array}{r}                                     $                                                                                                                                                                                                                                                                                       | Ŭ       |

| Years Since<br>1955 (x)     | 0            | 5      | 10      | 15         | 20     | 25         | 30    | 35          | 40    | 45      | 50        |
|-----------------------------|--------------|--------|---------|------------|--------|------------|-------|-------------|-------|---------|-----------|
| Minimum<br>Wage (y)         | .75          | 1.00   | 1.25    | 1.45       | 2.00   | 3.10       | 3.35  | 3.80        | 4.25  | 5.15    | 5.15      |
| Write the linear regr       | ession       | equati | ion foi | r this     | set of | data.      | round | ing all     | value | es to t | hree dec  |
| places.                     |              | 1      |         |            |        | ,          |       | 6           |       | -       |           |
|                             |              |        |         |            |        |            |       |             |       |         |           |
|                             | 1 <b>.</b> . |        | 1       | 11.1       |        | 1          | cc    | •••         |       |         |           |
| State the strength and      | l direct     |        |         |            |        |            |       |             |       |         |           |
|                             |              | 5      | = 0.    | 697        | SH     | 54         | 545   | ×+          | . 402 | 15153   | 273       |
|                             |              |        | 33      | = 0        | .09    | 8 ×        | + 0   | . 402       |       |         |           |
|                             |              |        |         |            |        | 2          |       |             |       |         |           |
| The strend                  | o u          |        |         |            |        |            |       |             |       |         |           |
| The strengt                 | n th         | e i    | sery    | low        |        | nd         | incre | ases        | at    |         |           |
| The strengt<br>a rate of    | n H          | .098   | per per | lou<br>r s | yea    | nd         | incre | ases        | at    |         |           |
| The strengt<br>a rate of    | n H          | .098   | per per | lor<br>F   | 1 Q1   | nd         | incre | <b>ases</b> | at    |         |           |
| The strengt<br>a rate of    | n 44<br>0    | .098   | , bei   | lou<br>r s | s an   | ndi<br>Nrs | incre | <b>ase3</b> | at    |         |           |
| The strengt<br>a rate of    | n H          | .098   | , bei   | 101.<br>   | 4 Qec  | ndi<br>Nrs | incre | <b>ase3</b> | at    |         |           |
| r <b>e 2:</b> The student w |              |        |         |            |        |            |       |             |       | d of th | ne correl |
|                             |              |        |         |            |        |            |       |             |       | d of th | ne correl |

| 3 The ta | able below shows        | the m | inimu | m hou | rly wa | ge, in | U.S. d | ollars, | for se | lected | years | since |
|----------|-------------------------|-------|-------|-------|--------|--------|--------|---------|--------|--------|-------|-------|
|          | Years Since<br>1955 (x) | 0     | 5     | 10    | 15     | 20     | 25     | 30      | 35     | 40     | 45    | 50    |
|          | Minimum<br>Wage (y)     | .75   | 1.00  | 1.25  | 1.45   | 2.00   | 3.10   | 3.35    | 3.80   | 4.25   | 5.15  | 5.15  |

Write the linear regression equation for this set of data, rounding all values to *three decimal places*.



State the strength and direction indicated by the correlation coefficient.

r=+9876

**Score 2:** The student wrote an expression and indicated a positive correlation.

|                        | s Since<br>55 (x) | 0       | 5       | 10      | 15       | 20      | 25      | 30      | 35      | 40      | 45      | 50     |
|------------------------|-------------------|---------|---------|---------|----------|---------|---------|---------|---------|---------|---------|--------|
|                        | imum<br>ge (y)    | .75     | 1.00    | 1.25    | 1.45     | 2.00    | 3.10    | 3.35    | 3.80    | 4.25    | 5.15    | 5.15   |
| Write the l<br>places. | inear regre       | ession  | equati  | on foi  | r this : | set of  | data,   | round   | ing al  | l value | es to t | hree d |
| State the st           | rength and        | direct  | ion inc | licated | l by th  | e corre | elation | ı coeff | icient. |         |         |        |
|                        |                   |         |         | 4=      | (<br>    | X       | +1      | 0       |         |         |         |        |
|                        |                   |         |         | a       | > .      | 09      | 8       |         |         |         |         |        |
|                        |                   |         |         | 6       | τ.       | 40      | a       |         |         |         |         |        |
|                        |                   |         |         |         |          |         |         |         |         |         |         |        |
|                        |                   |         |         |         |          |         |         |         |         |         |         |        |
|                        |                   |         |         |         |          |         |         |         |         |         |         |        |
|                        |                   |         |         |         |          |         |         |         |         |         |         |        |
| <b>·e 2:</b> The       | e student w       | vrote a | corre   | ct regi | ressior  | n equa  | tion.   |         |         |         |         |        |
|                        |                   |         |         | 0       |          | T       |         |         |         |         |         |        |
|                        |                   |         |         |         |          |         |         |         |         |         |         |        |

|     | Years Since<br>1955 (x)                                                      | 0      | 5       | 10      | 15      | 20   | 25      | 30   | 35      | 40   | 45   | 50        |
|-----|------------------------------------------------------------------------------|--------|---------|---------|---------|------|---------|------|---------|------|------|-----------|
|     | Minimum<br>Wage (y)                                                          | .75    | 1.00    | 1.25    | 1.45    | 2.00 | 3.10    | 3.35 | 3.80    | 4.25 | 5.15 | 5.15      |
| pla | the linear regrese<br>te the strength and $\frac{\text{LinRe}}{\text{y-we}}$ | direct | ion inc | licated | l by th |      | elation |      | icient. |      |      | hree deci |
|     |                                                                              |        |         |         |         |      |         |      |         |      |      |           |

| Minimum<br>Wage (y).751.001.251.452.003.103.353.804.255.155.15Vrite the linear regression equation for this set of data, rounding all values to three declaces.tate the strength and direction indicated by the correlation coefficient. $Y=0X+b$<br>$Y=.09754X+.40227$<br>$40227$ $40227$<br>$40227$ $40227$<br>$40277$ $40227$<br>$40277$ $40277$<br>$40277$ $40277$<br>$40277$ $40277$<br>$40277$ $40277$<br>$40277$ $40277$<br>$40277$ <td colspan<="" th=""><th>Years Since<br/>1955 (x)</th><th>0</th><th>5</th><th>10</th><th>15</th><th>20</th><th>25</th><th>30</th><th>35</th><th>40</th><th>45</th><th>50</th></td> | <th>Years Since<br/>1955 (x)</th> <th>0</th> <th>5</th> <th>10</th> <th>15</th> <th>20</th> <th>25</th> <th>30</th> <th>35</th> <th>40</th> <th>45</th> <th>50</th> | Years Since<br>1955 (x) | 0        | 5       | 10         | 15      | 20        | 25         | 30   | 35   | 40      | 45      | 50 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|---------|------------|---------|-----------|------------|------|------|---------|---------|----|
| tate the strength and direction indicated by the correlation coefficient.<br>$\begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                     | .75                     | 1.00     | 1.25    | 1.45       | 2.00    | 3.10      | 3.35       | 3.80 | 4.25 | 5.15    | 5.15    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tate the strength and<br>y=0x<br>y=0x<br>y=0<br>-640227                                                                                                             | direct<br>HB<br>975     | ion inc  | licated | l by th    | e corre |           |            | _    | 124  | es to t | hree de |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                     | 754                     | <b>\</b> | 109     | 251<br>00- | rre     | elo<br>er | 11.<br>11. | or   | VE   | 2a      | K.      |    |

|     | Years Since<br>1955 (x)          | 0       | 5       | 10      | 15   | 20     | 25   | 30   | 35   | 40   | 45      | 50      |
|-----|----------------------------------|---------|---------|---------|------|--------|------|------|------|------|---------|---------|
|     | Minimum<br>Wage (y)              | .75     | 1.00    | 1.25    | 1.45 | 2.00   | 3.10 | 3.35 | 3.80 | 4.25 | 5.15    | 5.15    |
| ola | ite the linear regro <i>ces.</i> | direct  | ion inc | licated |      | e corr |      |      |      |      | es to t | hree de |
|     |                                  | tated s |         |         |      |        |      |      |      |      |         |         |

**37** Solve the system of equations algebraically for *x* and *y*:  $\frac{y}{x} = \frac{x-3}{2}$ y + 2 = xy=x-2  $\frac{x-2}{x} = \frac{x-3}{2}$  $\partial x - 4 = x^2 - 3x$  $x^{2}-5x+4=0$  (x-4)(x-1)=0 x=4 x=1 y=0=4 y=0 y=0=4 y=0y+2=1 dutions

**Score 4:** The student gave a complete and correct response.



**Score 4:** The student gave a complete and correct response. The student clearly indicated which x-value was used to obtain the y-value.

**37** Solve the system of equations algebraically for *x* and *y*:  $\frac{y}{x} = \frac{x-3}{2}$ y + 2 = x4+2 y+2  $\frac{y}{y+2} = \frac{y-i}{2}$   $\frac{y}{y+2} = \frac{y^{2}+y-2}{2}$   $0 = \frac{y^{2}-y-2}{(y-2)(y+i)} = 0$   $\frac{y-2}{y=2} | y=-i$   $\frac{y=2}{x=4} | x=i$ 

**Score 4:** The student gave a complete and correct response.



**37** Solve the system of equations algebraically for *x* and *y*:  $\frac{y}{x} = \frac{x-3}{2}$ y + 2 = x $\frac{y}{y+2} = \frac{(y+2)-(3)}{2}$ 24 = (4+2)(4+2)-(5)  $2y = y^2 + 4y + 4 - 3$ -24 -24  $y^2 + 2y + 1 = 0$ (4+1)(y+1)=0 -1+2=1

Score 2: The student made a conceptual error performing the cross product.







**Score 1:** The student wrote a correct equation in one variable, but then made numerous errors.





**38** A rocket is shot vertically into the air. Its height, h, at any time, t, in seconds, can be modeled by the equation  $h = -16t^2 + 184t$ . Determine algebraically, the number of seconds it will take the rocket to reach a height of 529 feet.

**Score 4:** The student gave a complete and correct response.

**38** A rocket is shot vertically into the air. Its height, h, at any time, t, in seconds, can be modeled by the equation  $h = -16t^2 + 184t$ . Determine algebraically, the number of seconds it will take the rocket to reach a height of 529 feet.

$$\frac{1}{12^{2} + 184^{2} + 184^{2}}_{164^{2} + 184^{2} + 529 = 0}$$

$$\frac{1}{164^{2} + 184^{2} + 529 = 0}_{-164^{2} + 184^{2} + 529 = 0}$$

$$\frac{1}{164^{2} + 184^{2} + 529 = 0}_{-44^{2} (44^{-}23) + 23^{2} (44^{-}23) = 0}$$

$$\frac{1}{2^{2} + 23^{2}}_{1} + \frac{1}{2^{2} + 23^{2}}_{2} + \frac{1}{2^{2} + 23^{2}}_{$$

**38** A rocket is shot vertically into the air. Its height, h, at any time, t, in seconds, can be modeled by the equation  $h = -16t^2 + 184t$ . Determine algebraically, the number of seconds it will take the rocket to reach a height of 529 feet.

$$529 = -16t^{2} + 184t$$
  

$$-16t^{2} + 184t = 029 = 0$$
  

$$x = -(184) \pm \frac{(184)^{2} - 74(-16)(-529)}{(141)}$$
  

$$- 184 \pm \sqrt{33856^{2} - 33852}$$
  

$$- 32$$

$$\frac{-189}{-32} = 5.25$$

**Score 3:** The student made one error when converting the fraction to a decimal.



Algebra 2/Trigonometry - Jan. '17

**38** A rocket is shot vertically into the air. Its height, h, at any time, t, in seconds, can be modeled by the equation  $h = -16t^2 + 184t$ . Determine algebraically, the number of seconds it will take the rocket to reach a height of 529 feet.

|          | $\begin{split} S_{24} = -I_{64}^{*} + I_{84}^{*} + I_{16}^{*} + I_{20}^{*} + I_{2$ |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Score 2: | The student wrote $-184$ instead of 184 in the quadratic formula. The final answer did not make sense in the context of the problem.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

**38** A rocket is shot vertically into the air. Its height, h, at any time, t, in seconds, can be modeled by the equation  $h = -16t^2 + 184t$ . Determine algebraically, the number of seconds it will take the rocket to reach a height of 529 feet.



**Score 1:** The student made a transcription error when writing the equation and made a conceptual error by subtracting 184 instead of 184*t*.

**38** A rocket is shot vertically into the air. Its height, h, at any time, t, in seconds, can be modeled by the equation  $h = -16t^2 + 184t$ . Determine algebraically, the number of seconds it will take the rocket to reach a height of 529 feet.

 $529 = -16t^{2} + 184t$  529 = -32t + 1846 529 = 152t152 + 152

3.4 Seconds

**Score 0:** The student made a conceptual error when going from line 1 to line 2, creating a simpler linear equation for which no credit was earned, and made a rounding error.

**38** A rocket is shot vertically into the air. Its height, h, at any time, t, in seconds, can be modeled by the equation  $h = -16t^2 + 184t$ . Determine algebraically, the number of seconds it will take the rocket to reach a height of 529 feet.

2 -J-33.0625=Jt<sup>2</sup> +=5.75300001

**Score 0:** The student obtained a correct answer by an obviously incorrect procedure

**38** A rocket is shot vertically into the air. Its height, h, at any time, t, in seconds, can be modeled by the equation  $h = -16t^2 + 184t$ . Determine algebraically, the number of seconds it will take the rocket to reach a height of 529 feet.

629 =- 16 6 × + 184 6 529 = -166 - 524 -1846 0=-166°+1846-529 (-46 + )(46- ) 529-1846 10 64 256 E=13 2176

**Score 0:** The student did not show enough work to receive any credit.

**39** Forces of 22 pounds and 43 pounds act on an object at an angle of 52°. Determine, to the *nearest pound*, the magnitude of the resultant force.



Find, to the *nearest degree*, the angle between the smaller force and the resultant force.





**Score 6:** The student gave a complete and correct response.

**39** Forces of 22 pounds and 43 pounds act on an object at an angle of 52°. Determine, to the *nearest pound*, the magnitude of the resultant force.

$$\frac{43}{\sqrt{22}}$$

$$\frac{22}{\sqrt{32}}$$

$$\frac{128}{\sqrt{3}}$$

$$\frac{128}{\sqrt{32}}$$

Find, to the *nearest degree*, the angle between the smaller force and the resultant force.

$$43^{2} = 22^{2} + 59^{2} - 2(22)59\cos y$$
  

$$1849 = 3965 - 2596\cos y$$
  

$$-2116 = -2596\cos y$$
  

$$\cdot 8151 = \cos y$$
  

$$35 = y$$

**Score 6:** The student gave a complete and correct response.



**39** Forces of 22 pounds and 43 pounds act on an object at an angle of 52°. Determine, to the *nearest pound*, the magnitude of the resultant force.



Find, to the *nearest degree*, the angle between the smaller force and the resultant force.



**Score 5:** The student did not solve for the correct angle. Since the student only gave one legible response to find 59, it can be scored, even though it is crossed out.

**39** Forces of 22 pounds and 43 pounds act on an object at an angle of 52°. Determine, to the *nearest pound*, the magnitude of the resultant force.



Find, to the *nearest degree*, the angle between the smaller force and the resultant force.

$$\frac{59.1924}{5102} = \frac{22}{5102}$$

$$19.33223658 = 59.1429$$

$$510 \times = .2931262022$$

$$\chi = 12^{\circ}2^{1}$$

$$\chi = 12^{\circ}2^{1}$$

**Score 4:** The student did not round the magnitude to 59 and solved for the wrong angle.

**39** Forces of 22 pounds and 43 pounds act on an object at an angle of 52°. Determine, to the *nearest pound*, the magnitude of the resultant force.



Find, to the *nearest degree*, the angle between the smaller force and the resultant force.



**39** Forces of 22 pounds and 43 pounds act on an object at an angle of 52°. Determine, to the *nearest pound*, the magnitude of the resultant force. c2 = 1168.168489 C = JIL68,168489 1 C= a2+b=-Zab cosC C = 34,17847991 ~= 222+432-2(22(43) cos52 C= 484 + 1849- 1892 co3 52 Fesultantforce = 34 pounds c= 233 3-1164 831511 Find, to the *nearest degree*, the angle between the smaller force and the resultant force.  $\frac{\sin \alpha}{43} = \frac{\sin 52}{34}$ 435in52 = 348ina Sin a = . 9966018354 q = 85, 27520583 m4 = 85 The student made a conceptual error by using 52° instead of 128° when solving for both Score 4: the magnitude and the angle.

**39** Forces of 22 pounds and 43 pounds act on an object at an angle of 52°. Determine, to the *nearest pound*, the magnitude of the resultant force.

Find, to the *nearest degree*, the angle between the smaller force and the resultant force.

$$22^{2} 43^{2} + 34^{2} - 2(43)(4)$$

$$48 4 = 86015 - 2424(05A^{2})(4)$$

$$-252 + = -2924(05A^{2})(4)$$

$$-2924 - 2924(05A^{2})(4)$$

**Score 4:** The student made an error in sign when computing the magnitude and found the wrong angle.

39 Forces of 22 pounds and 43 pounds act on an object at an angle of 52°. Determine, to the nearest pound, the magnitude of the resultant force.  $q^{2} = b^{2} + c^{2} - 2bccost$   $o^{2} = 22^{2} + 43^{2} - 2(22)(43)cost21$   $a^{2} - 3497.83$  a = 59.14 16 2215 Find, to the *nearest degree*, the angle between the smaller force and the resultant force. The student did not round the magnitude correctly and did not find the correct angle. Score 3:



**39** Forces of 22 pounds and 43 pounds act on an object at an angle of 52°. Determine, to the *nearest pound*, the magnitude of the resultant force.



Find, to the *nearest degree*, the angle between the smaller force and the resultant force.

**Score 1:** The student only drew a correct diagram.

39 Forces of 22 pounds and 43 pounds act on an object at an angle of 52°. Determine, to the nearest *pound*, the magnitude of the resultant force.  $c^{2} = (22)^{2} + (43)^{2} - 2(22)(43) (as 52)$   $E^{2} = \sqrt{2641}$  C = 51.39Find, to the *nearest degree*, the angle between the smaller force and the resultant force. The student used 52° instead of 128° and made both a computational and a rounding error. Score 0:

**39** Forces of 22 pounds and 43 pounds act on an object at an angle of 52°. Determine, to the *nearest pound*, the magnitude of the resultant force.

$$L = 22^{2} + 215^{2} - 2(22)(43) \cos 52$$
  
$$-L^{2} = 51.39434363 + \frac{43}{-22}$$

Find, to the *nearest degree*, the angle between the smaller force and the resultant force.

$$\frac{65}{5m52^{\circ}} = \frac{51.4}{5mA}$$

$$\frac{5mA = \frac{51.4(5m52)}{65}$$

$$\frac{5mA = .8944770767}{4}$$

$$\frac{5mA = 51^{\circ}}{5}$$

**Score 0:** The student used 52° instead of 128°, calculated in radians and did not round correctly. The student also added the forces and made a computational error.