Table of Contents

Question 28 2
Question 29 8
Question 30 12
Question 31 19
Question 32 24
Question 33 31
Question 34 35
Question 35 41
Question 36 48
Question 37 58
Question 38 68
Question 39 77
28 Factor $6x^3 + 33x^2 - 63x$ completely.

\[
3x (2x^2 + 11x - 21) \\
3x (2x - 3)(x + 7)
\]

Score: 2 The student gave a complete and correct response.
28 Factor $6x^3 + 33x^2 - 63x$ completely.

Score: 2 The student gave a complete and correct response.
28 Factor $6x^3 + 33x^2 - 63x$ completely.

Score: 1 The student made an error by treating the expression as an equation.
28 Factor $6x^3 + 33x^2 - 63x$ completely.

$3x (2x^2 + 11x - 21)$

$3x (2x + 7)(x - 3)$

Score: 1 The student made one factoring error.
28 Factor $6x^3 + 33x^2 - 63x$ completely.

\[3x(2x+11x -21) \]

Score: 1 The student did not factor completely.
28 Factor $6x^3 + 33x^2 - 63x$ completely.

\[
\begin{array}{c|c|c|c}
3x & 2x^2 + 11x - 21 & = 0 \\
\hline
3x & 2x^2 + 11x - 21 & = 0 \\
\hline
 & 2(x^2 - 7x + 7) & x + 7 = 0 \\
 & x = -7 & 15, 75 = 0 \\
 & x = -7 & \\
\end{array}
\]

Score: 0 The student factored incorrectly and treated the expression as an equation.
29 Five thousand dollars is invested at an interest rate of 3.5% compounded quarterly. No money is deposited or withdrawn from the account. Using the formula below, determine, to the nearest cent, how much this investment will be worth in 18 years.

\[A = P\left(1 + \frac{r}{n}\right)^{nt} \]

- \(A \) = amount
- \(P \) = principal
- \(r \) = interest rate
- \(n \) = number of times the interest rate compounded annually
- \(t \) = time in years

\[A = 5000\left(1 + \frac{0.035}{4}\right)^{4 \cdot 18} \]

\[A = \$9362.36 \]

Score: 2 The student gave a complete and correct response.
Five thousand dollars is invested at an interest rate of 3.5% compounded quarterly. No money is deposited or withdrawn from the account. Using the formula below, determine, to the nearest cent, how much this investment will be worth in 18 years.

\[A = P\left[1 + \frac{r}{n}\right]^nt \]

- \(A \) = amount
- \(P \) = principal
- \(r \) = interest rate
- \(n \) = number of times the interest rate compounded annually
- \(t \) = time in years

Score: 1 The student did not divide 0.035 by 4 to get the quarterly rate.
29 Five thousand dollars is invested at an interest rate of 3.5% compounded quarterly. No money is deposited or withdrawn from the account. Using the formula below, determine, to the nearest cent, how much this investment will be worth in 18 years.

\[A = P \left(1 + \frac{r}{n}\right)^{nt} \]

- \(A \) = amount
- \(P \) = principal
- \(r \) = interest rate
- \(n \) = number of times the interest rate compounded annually
- \(t \) = time in years

\[A = 5000 \left(1 + \frac{0.035}{4}\right)^{4 \times 18} \]

\[A = 5848.90 \]

\[A = 5,848.90 \]

\[A = \$5,848.90 \]

Score: 1 The student did not multiply the number of years by 4.
Question 29

29 Five thousand dollars is invested at an interest rate of 3.5% compounded quarterly. No money is deposited or withdrawn from the account. Using the formula below, determine, to the nearest cent, how much this investment will be worth in 18 years.

\[A = P\left[1 + \frac{r}{n}\right]^{nt} \]

- \(A \) = amount
- \(P \) = principal
- \(r \) = interest rate
- \(n \) = number of times the interest rate compounded annually
- \(t \) = time in years

\[5000\left[1 + \frac{3.5}{4}\right]^{18 \times 4} \]

\[5069, 883, 615.22 \]

Score: 0 The student gave a completely incorrect response.
30 A colony of bacteria grows exponentially. The table below shows the data collected daily.

<table>
<thead>
<tr>
<th>Day (x)</th>
<th>Population (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>1</td>
<td>425</td>
</tr>
<tr>
<td>2</td>
<td>570</td>
</tr>
<tr>
<td>3</td>
<td>800</td>
</tr>
<tr>
<td>4</td>
<td>1035</td>
</tr>
<tr>
<td>5</td>
<td>1650</td>
</tr>
<tr>
<td>6</td>
<td>2600</td>
</tr>
</tbody>
</table>

State the exponential regression equation for the data, rounding all values to the nearest hundredth.

\[
\begin{align*}
a &= 239.21 \\
b &= 1.48 \\
y &= 239.21 (1.48)^x
\end{align*}
\]

Score: 2 The student gave a complete and correct response.
30 A colony of bacteria grows exponentially. The table below shows the data collected daily.

<table>
<thead>
<tr>
<th>Day (x)</th>
<th>Population (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>1</td>
<td>425</td>
</tr>
<tr>
<td>2</td>
<td>570</td>
</tr>
<tr>
<td>3</td>
<td>800</td>
</tr>
<tr>
<td>4</td>
<td>1035</td>
</tr>
<tr>
<td>5</td>
<td>1650</td>
</tr>
<tr>
<td>6</td>
<td>2600</td>
</tr>
</tbody>
</table>

State the exponential regression equation for the data, rounding all values to the nearest hundredth.

\[y = a \times b^x \]

\[a = 239.21 \quad b = 1.48 \]

Score: 2 The student gave a complete and correct response.
A colony of bacteria grows exponentially. The table below shows the data collected daily.

<table>
<thead>
<tr>
<th>Day (x)</th>
<th>Population (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>1</td>
<td>425</td>
</tr>
<tr>
<td>2</td>
<td>570</td>
</tr>
<tr>
<td>3</td>
<td>800</td>
</tr>
<tr>
<td>4</td>
<td>1035</td>
</tr>
<tr>
<td>5</td>
<td>1650</td>
</tr>
<tr>
<td>6</td>
<td>2600</td>
</tr>
</tbody>
</table>

State the exponential regression equation for the data, rounding all values to the nearest hundredth.

\[y = a \cdot b^x \]

\[y = 245.015 \cdot (1.47)^x \]

Score: 1 The student wrote an incorrect exponential regression equation. [The student may have not cleared the frequency on the exponential regression screen on the calculator after doing question number 25.]
30 A colony of bacteria grows exponentially. The table below shows the data collected daily.

<table>
<thead>
<tr>
<th>Day (x)</th>
<th>Population (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>1</td>
<td>425</td>
</tr>
<tr>
<td>2</td>
<td>570</td>
</tr>
<tr>
<td>3</td>
<td>800</td>
</tr>
<tr>
<td>4</td>
<td>1035</td>
</tr>
<tr>
<td>5</td>
<td>1650</td>
</tr>
<tr>
<td>6</td>
<td>2600</td>
</tr>
</tbody>
</table>

State the exponential regression equation for the data, rounding all values to the nearest hundredth.

\[239.21 \left(1.48\right)^x \]

Score: 1 The student wrote an expression instead of an equation.
A colony of bacteria grows exponentially. The table below shows the data collected daily.

<table>
<thead>
<tr>
<th>Day (x)</th>
<th>Population (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>1</td>
<td>425</td>
</tr>
<tr>
<td>2</td>
<td>570</td>
</tr>
<tr>
<td>3</td>
<td>800</td>
</tr>
<tr>
<td>4</td>
<td>1035</td>
</tr>
<tr>
<td>5</td>
<td>1650</td>
</tr>
<tr>
<td>6</td>
<td>2600</td>
</tr>
</tbody>
</table>

State the exponential regression equation for the data, rounding all values to the nearest hundredth.

\[y = a \cdot b^x \]

\[a = 239.2 \]
\[b = 1.5 \]
\[y = \left(239.2\right)^{1.5^x} \]

Score: 0 The student rounded both values to the nearest tenth and made a conceptual error when writing the equation.
A colony of bacteria grows exponentially. The table below shows the data collected daily.

<table>
<thead>
<tr>
<th>Day (x)</th>
<th>Population (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>1</td>
<td>425</td>
</tr>
<tr>
<td>2</td>
<td>570</td>
</tr>
<tr>
<td>3</td>
<td>800</td>
</tr>
<tr>
<td>4</td>
<td>1035</td>
</tr>
<tr>
<td>5</td>
<td>1650</td>
</tr>
<tr>
<td>6</td>
<td>2600</td>
</tr>
</tbody>
</table>

State the exponential regression equation for the data, rounding all values to the nearest hundredth.

\[
\hat{y} = 239.211 \cdot 1.481^x
\]

Score: 0 The student rounded incorrectly and wrote an expression instead of an equation.
30 A colony of bacteria grows exponentially. The table below shows the data collected daily.

<table>
<thead>
<tr>
<th>Day (x)</th>
<th>Population (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>1</td>
<td>425</td>
</tr>
<tr>
<td>2</td>
<td>570</td>
</tr>
<tr>
<td>3</td>
<td>800</td>
</tr>
<tr>
<td>4</td>
<td>1035</td>
</tr>
<tr>
<td>5</td>
<td>1650</td>
</tr>
<tr>
<td>6</td>
<td>2600</td>
</tr>
</tbody>
</table>

State the exponential regression equation for the data, rounding all values to the nearest hundredth.

\[y = ax + b \]
\[a = 361.25 \]
\[b = -43.75 \]

\[y = 361.25x - 43.75 \]

Score: 0 The student made an error by finding a linear regression.
31 Express \(\frac{2 + \frac{6}{x - 3}}{x} \) in simplest form, when \(x \neq 0 \) and \(x \neq 3 \).

\[
\frac{2 + \frac{6}{x - 3}}{x} = \frac{2x - 6 + 6}{x} = \frac{2x}{x} = 2
\]

Score: 2 The student gave a complete and correct response.
Express \(\frac{2 + \frac{6}{x-3}}{\frac{x}{x-3}} \) in simplest form, when \(x \neq 0 \) and \(x \neq 3 \).

Score: 2 The student gave a complete and correct response.
Question 31

Express \(\frac{2 + \frac{6}{x-3}}{\frac{x}{x-3}} \) in simplest form, when \(x \neq 0 \) and \(x \neq 3 \).

Score: 1 The student made an error by not multiplying both terms of the numerator by \((x - 3)\).
31 Express \(\frac{x}{x - 3} + \frac{6}{x - 3} \) in simplest form, when \(x \neq 0 \) and \(x \neq 3 \).

Score: 1 The student did not simplify completely.
Question 31

31 Express \(\frac{2 + \frac{6}{x-3}}{x} \) in simplest form, when \(x \neq 0 \) and \(x \neq 3 \).

Score: 0 The student made an error by not multiplying both terms of the numerator by \((x - 3)\) and stated the final answer as an equation.
A central angle whose measure is $\frac{2\pi}{3}$ radians intercepts an arc with a length of 4π feet.

Find the radius of the circle, in feet.

$$S = \Theta r$$

$$S = 4\pi$$

$$\Theta = \frac{2\pi}{3}$$

$$\frac{3}{4\pi} \cdot 4\pi = \left(\frac{2\pi}{3}\right) r \cdot \frac{3}{2\pi}$$

$$6 = r$$

Score: 2 The student gave a complete and correct response.
32 A central angle whose measure is $\frac{2\pi}{3}$ radians intercepts an arc with a length of 4π feet.

Find the radius of the circle, in feet.

\[
\frac{2\pi}{3} \cdot \lambda = 4\pi
\]

\[
\frac{\lambda}{3} = 2
\]

\[
\lambda = 6
\]

Score: 2 The student gave a complete and correct response.
32 A central angle whose measure is \(\frac{2\pi}{3} \) radians intercepts an arc with a length of 4\(\pi \) feet.

Find the radius of the circle, in feet.

\[
\frac{2(180)}{3} = 120
\]

\[
\frac{120}{360} = \frac{2}{\pi r}
\]

\[
\frac{1}{3} = \frac{2}{r}
\]

\[
r = 6
\]

Score: 2 The student gave a complete and correct response.
A central angle whose measure is $\frac{2\pi}{3}$ radians intercepts an arc with a length of 4π feet. Find the radius of the circle, \textit{in feet}.

\begin{align*}
\frac{\frac{2\pi}{3}}{2\pi} &= \frac{4\pi}{2\pi r} \\
8\pi^2 &= 4\pi^2 \cdot \frac{2}{3} \\
24\pi^2 &= 4\pi^2 r \\
6 &= r
\end{align*}

\textbf{Score: 2} \quad \text{The student gave a complete and correct response.}
32 A central angle whose measure is \(\frac{2\pi}{3} \) radians intercepts an arc with a length of \(4\pi \) feet.

Find the radius of the circle, in feet.

Score: 1 The student made an error by dividing \(\frac{2\pi}{3} \) by \(4\pi \).
32 A central angle whose measure is $\frac{2\pi}{3}$ radians intercepts an arc with a length of 4π feet. Find the radius of the circle, in feet.

\[
\frac{4\pi}{\frac{2\pi}{3}} = \frac{\frac{2\pi}{3}}{\frac{2\pi}{3}}
\]

\[
\frac{2}{3} = r
\]

Score: 1 The student made an error when dividing by $\frac{2\pi}{3}$.
32 A central angle whose measure is \(\frac{2\pi}{3} \) radians intercepts an arc with a length of \(4\pi \) feet. Find the radius of the circle, in feet.

Score: 0 The student made an error by interchanging the arc length and angle measure, and then made an error when dividing by \(4\pi \).
A sine function is graphed below.

Determine and state the amplitude and period of this function.

\[
\text{amplitude} = 2 \\
\text{period} = 2\pi
\]

Score: 2 The student gave a complete and correct response.
33 A sine function is graphed below.

Determine and state the amplitude and period of this function.

Score: 1 The student stated an incorrect period.
A sine function is graphed below.

Determine and state the amplitude and period of this function.

\[
\text{Amplitude} = 4
\]

\[
\text{Period} = 2\pi
\]

Score: 1 The student stated an incorrect amplitude.
33 A sine function is graphed below.

Determine and state the amplitude and period of this function.

Amplitude - 1.3
Period - \(\frac{1}{3}\pi \)

Score: 0 The student stated an incorrect amplitude and period.
On the Algebra 2/Trigonometry midterm at Champion High School, the scores of 210 students were normally distributed with a mean of 82 and a standard deviation of 4.2.

Determine how many students scored between 79.9 and 88.3.

\[
\begin{align*}
\text{Score: } & 2 \quad \text{The student gave a complete and correct response.}
\end{align*}
\]
On the Algebra 2/Trigonometry midterm at Champion High School, the scores of 210 students were normally distributed with a mean of 82 and a standard deviation of 4.2.

Determine how many students scored between 79.9 and 88.3.

\[\frac{62.4}{100} = \frac{x}{210} \]

13,104 = 100x

131 = x

Score: 2 The student gave a complete and correct response.
34 On the Algebra 2/Trigonometry midterm at Champion High School, the scores of 210 students were normally distributed with a mean of 82 and a standard deviation of 4.2.

Determine how many students scored between 79.9 and 88.3.

\[
\text{normalcdf} (-79.9, 88.3, 82, 4.2) = 0.1311776002 \\
\approx 131
\]

Score: 2 The student gave a complete and correct response.
Question 34

34 On the Algebra 2/Trigonometry midterm at Champion High School, the scores of 210 students were normally distributed with a mean of 82 and a standard deviation of 4.2.

Determine how many students scored between 79.9 and 88.3.

Score: 1 The student did not determine the number of students.
34 On the Algebra 2/Trigonometry midterm at Champion High School, the scores of 210 students were normally distributed with a mean of 82 and a standard deviation of 4.2.

Determine how many students scored between 79.9 and 88.3.

Score: 1 The student made an error in finding the percentage.
34 On the Algebra 2/Trigonometry midterm at Champion High School, the scores of 210 students were normally distributed with a mean of 82 and a standard deviation of 4.2. Determine how many students scored between 79.9 and 88.3.

Score: 0 The student made an error in calculating the percentage and did not round appropriately.
35 Given \(\tan \theta = -\frac{5}{12} \) and \(\frac{\pi}{2} < \theta < \pi \), determine the exact value of the expression \(\sin \theta \cot \theta \).

Score: 2 The student gave a complete and correct response.
35 Given \(\tan \theta = -\frac{5}{12} \) and \(\frac{\pi}{2} < \theta < \pi \), determine the exact value of the expression \(\sin \theta \cot \theta \).

\[
\tan \theta = -\frac{5}{12} \\
\theta = \tan^{-1}(-\frac{5}{12}) \\
\theta = 157.3801351
\]

\[
\sin \theta \cot \theta = -0.9230769251 \\
\sin \theta \cot \theta = -0.923076
\]

Score: 2 The student gave a complete and correct response.
35 Given \(\tan \theta = -\frac{5}{12} \) and \(\frac{\pi}{2} < \theta < \pi \), determine the exact value of the expression \(\sin \theta \cot \theta \).

\[
\sin \theta \cot \theta = \left(-\frac{5}{12} \right) \left(-\frac{12}{5} \right) = \frac{60}{60} = 1
\]

\[
tan \theta = -\frac{5}{12} \text{ and } \frac{\pi}{2} < \theta < \pi
\]

\[
\begin{array}{c}
T \\
A \\
C
\end{array}
\]

Score: 1 The student made an error by placing the angle in Quadrant III.
Given \(\tan \theta = -\frac{5}{12} \) and \(\frac{\pi}{2} < \theta < \pi \), determine the exact value of the expression \(\sin \theta \cot \theta \).

Score: 1 The student made an error by not finding the product.
35 Given $\tan \theta = -\frac{5}{12}$ and $\frac{\pi}{2} < \theta < \pi$, determine the exact value of the expression $\sin \theta \cot \theta$.
Question 35

35 Given $\tan \theta = -\frac{5}{12}$ and $\frac{\pi}{2} < \theta < \pi$, determine the exact value of the expression $\sin \theta \cot \theta$.

Score: 0 The student made a transcription error when expressing $\cot \theta$ and did not express the exact value as the final answer.
35 Given \(\tan \theta = -\frac{5}{12} \) and \(\frac{\pi}{2} < \theta < \pi \), determine the exact value of the expression \(\sin \theta \cot \theta \).

\[
\theta = \tan^{-1}(-\frac{5}{12}) = -22.61986495
\]

\[
(\sin(-22.619...)) \left(\frac{\pi}{\sin(-22.619...)} \right) = 1
\]

Score: 0 The student gave a completely incorrect response.
The lengths of the sides of a triangle are 6 cm, 11 cm, and 7 cm. Determine, to the nearest tenth of a degree, the measure of the largest angle of the triangle.

Score: 4 The student gave a complete and correct response.
The lengths of the sides of a triangle are 6 cm, 11 cm, and 7 cm. Determine, to the nearest tenth of a degree, the measure of the largest angle of the triangle.

\[
x = \cos^{-1}\left(\frac{b^2 + c^2 - a^2}{2bc}\right)
\]

\[x = 115.3769335\]

\[x \approx 115.4\]

Score: 4 The student gave a complete and correct response.
The lengths of the sides of a triangle are 6 cm, 11 cm, and 7 cm. Determine, to the nearest tenth of a degree, the measure of the largest angle of the triangle.

Score: 3 The student made an error by dividing by 84 instead of \(-84\).
36 The lengths of the sides of a triangle are 6 cm, 11 cm, and 7 cm. Determine, to the nearest tenth of a degree, the measure of the largest angle of the triangle.

Score: 2 The student made an error by finding the measure of angle A in radians.
36 The lengths of the sides of a triangle are 6 cm, 11 cm, and 7 cm. Determine, to the nearest tenth of a degree, the measure of the largest angle of the triangle.

\[11^2 = 6^2 + 7^2 - 2(6)(7) \sin A \]
\[121 = 36 + 49 - 84 \sin A \]
\[36 = -84 \sin A \]
\[\sin A = \frac{36}{-84} \]

\[A = -25.4 \]

Score: 2 The student made a transcription error by using sine instead of cosine, and did not recognize that -25.4 is not a viable solution.
The lengths of the sides of a triangle are 6 cm, 11 cm, and 7 cm. Determine, to the nearest tenth of a degree, the measure of the largest angle of the triangle.

Score: 2 The student stated \(\cos \theta = 115.3 \) and did not round properly.
36 The lengths of the sides of a triangle are 6 cm, 11 cm, and 7 cm. Determine, to the nearest tenth of a degree, the measure of the largest angle of the triangle.

\[a^2 = b^2 + c^2 - 2bc \cos A \]
\[11^2 = 7^2 + 6^2 - 2(7)(6) \cos X \]
\[121 = 49 + 36 - 84 \cos X \]
\[121 = 85 + 84 \cos X \]
\[36 = 84 \cos X \]
\[-4.3 = \cos X \]

Score: 2 The student rounded prematurely and did not solve for \(x \).
The lengths of the sides of a triangle are 6 cm, 11 cm, and 7 cm. Determine, to the nearest tenth of a degree, the measure of the largest angle of the triangle.

Score: 1 The student made a correct substitution into the Law of Cosines.
36 The lengths of the sides of a triangle are 6 cm, 11 cm, and 7 cm. Determine, to the nearest tenth of a degree, the measure of the largest angle of the triangle.

\[6^2 = 7^2 + 11^2 - 2(7)(11) \cos x \]
\[36 = 49 + 121 - 154 \cos x \]
\[36 = 170 - 154 \cos x \]
\[-134 = -154 \cos x \]
\[\cos x = 0.8701298701 \]
\[\angle x = 29.53^\circ \]

Score: 1 The student made an error by finding the smallest angle and rounding incorrectly.
The lengths of the sides of a triangle are 6 cm, 11 cm, and 7 cm. Determine, to the nearest tenth of a degree, the measure of the largest angle of the triangle.

\[\frac{6}{\sin 7} = \frac{11}{\sin x} \]
\[\frac{6 \sin x = 11 \cdot \sin 7}{6} \]
\[\sin x = 0.2234 \ldots \]
\[\sin^{-1}(0.2234 \ldots) = 12.9 \]

Score: 0 The student made an error by using the Law of Sines and treated the 7 as an angle.
Question 37

37 Solve algebraically for c:

\[
\left| \frac{3}{2}c - 10 \right| - 9 \leq -1
\]

\[
\frac{3}{2}c - 10 + 9 \geq 0
\]

\[
\frac{3}{2}c \geq 1
\]

\[
c \geq \frac{2}{3}
\]

\[
\frac{3}{2}c - 10 - 9 \leq 0
\]

\[
\frac{3}{2}c - 10 - 9 \geq 0
\]

\[
\frac{3}{2}c \leq 19
\]

\[
c \leq \frac{38}{3}
\]

\[
\frac{3}{2}c \leq 19
\]

\[
\frac{3}{2}c - 10 - 9 \leq 0
\]

\[
\frac{3}{2}c - 10 - 9 \geq 0
\]

\[
\frac{3}{2}c \leq 19
\]

\[
c \leq \frac{38}{3}
\]

\[
\text{Score: 4} \quad \text{The student gave a complete and a correct response.}
\]
37 Solve algebraically for c:

\[
\left| \frac{3}{2}c - 10 \right| - 9 \leq -1
\]

Score: 4 The student gave a complete and correct response.
37 Solve algebraically for c:

$$\left| \frac{3}{2}c - 10 \right| - 9 \leq -1$$

\[
\begin{align*}
\frac{3}{2}c - 10 & \leq 8 \\
+10 & \quad +10 \\
\frac{2}{3}c & \leq 18 \cdot \frac{2}{3} \\
(12) & \geq c \\
\end{align*}
\]

\[
\begin{align*}
\frac{3}{2}c - 10 & \geq -8 \\
+10 & \quad +10 \\
\frac{2}{3}c & \geq 2 \cdot \frac{2}{3} \\
(1.3) & \leq c
\end{align*}
\]

Score: 3 The student made an error by expressing \(\frac{4}{3}\) as 1.3 instead of 1.\(\overline{3}\).
37 Solve algebraically for c:

$$\left| \frac{3}{2}c - 10 \right| - 9 \leq -1$$

\[\begin{align*}
\frac{3}{2}c - 10 - 9 & \leq -1 \\
\frac{3}{2}c - 19 & \leq -1 \\
\frac{3}{2}c & \leq 18 \\
c & \leq 12
\end{align*}\]

\[\begin{align*}
-\frac{3}{2}c + 10 - 9 & \leq -1 \\
-\frac{3}{2}c + 1 & \leq -1 \\
-\frac{3}{2}c & \leq -2 \\
\frac{3}{2}c & \geq 2 \\
c & \geq \frac{4}{3}
\end{align*}\]

\(\{ \frac{4}{3}, 12 \}\)

Score: 3 The student made an error by not stating the solution as a conjunction.
37 Solve algebraically for c:

$$\left| \frac{3}{2}c - 10 \right| - 9 \leq -1$$

$$\quad \quad + 9 + 9$$

$$\left| \frac{3}{2}c - 10 \right| \leq 8$$

$$\frac{3}{2}c - 10 \leq 8$$

$$\quad + 10 + 10$$

$$\frac{3}{2}c \leq 18$$

$$\quad \frac{3}{2} \quad \frac{3}{2}$$

$$c \leq 12$$

$$\frac{3}{2}c + 10 \geq 9$$

$$\quad -10 -10$$

$$\frac{3}{2}c \geq -2$$

$$\quad - \frac{3}{2}c - \frac{3}{2}$$

$$c \geq 1.66$$

Score: 2 The student made an error when writing the inequality symbol and did not write the solution as a conjunction.
Question 37

37 Solve algebraically for c:

$$\left| \frac{3}{2}c - 10 \right| - 9 \leq -1$$

\[
\begin{align*}
\left(\frac{3}{2}c - 10 \right) - 9 & \leq -1 \\
\frac{3}{2}c - 10 & \leq -20 \\
\frac{3}{2}c & \leq 10 \\
c & \leq \frac{20}{3}
\end{align*}
\]

\[
\begin{align*}
\left(\frac{3}{2}c + 10 \right) + 9 & \geq 1 \\
\frac{3}{2}c + 10 & \geq -10 \\
\frac{3}{2}c & \geq -20 \\
c & \geq \frac{4}{3}
\end{align*}
\]

\[c \leq 12\]

Score: 2 The student did not reverse the inequality sign and did not write the solution as a conjunction.
37 Solve algebraically for c:

$$\left| \frac{3}{2}c - 10 \right| - 9 \leq -1$$

$$\frac{3}{2}c - 10 \leq 8$$

$$\frac{3}{2}c \leq 18$$

$$c \leq 12$$

$$\frac{3}{2}c - 10 \geq 8$$

$$\frac{3}{2}c \geq 18$$

$$c \geq 12$$

Score: 1 The student made a conceptual error by multiplying by $\frac{3}{2}$ and then did not state the solution as a conjunction.
37 Solve algebraically for c:

\[
\left| \frac{3}{2}c - 10 \right| - 9 \leq -1
\]

\[
\left| \frac{3}{2}c - 10 \right| \leq 8
\]

\[
\frac{3}{2}c - 10 \leq 8
\]

\[
\frac{3}{2}c \leq 18
\]

\[
\frac{3}{2}c \leq 18 \div \frac{3}{2}
\]

\[
c \leq 12
\]

Score: 1 The student made an error by only solving for $c \leq 12$.
Question 37

37 Solve algebraically for c:

$$\left| \frac{3}{2}c - 10 \right| - 9 \leq -1$$

\[
\begin{align*}
\frac{3}{2}c + 10 - 9 & \leq -1 \\
\frac{3}{2}c - 1 & \leq -1 \\
\frac{3}{2}c & \leq -2 \\
\frac{3}{2}c & \leq -4 \\
\frac{3}{2}c & \leq -1.3 \\
\frac{3}{2}c & \leq -1.2
\end{align*}
\]

\[
\begin{align*}
\frac{3}{2}c - 10 - 9 & \leq -1 \\
\frac{3}{2}c - 19 & \leq -1 \\
\frac{3}{2}c & \leq 18 \\
\frac{3}{2}c & \geq 12
\end{align*}
\]

Score: 0 The student gave a completely incorrect response.
37 Solve algebraically for c:

\[\left| \frac{3}{2}c - 10 \right| - 9 \leq -1 \]

Score: 0 The student attempted to solve only one inequality and made a transcription error.
38 Solve $2\cos^3 \theta = \cos \theta$ for all values of θ in the interval $0^\circ \leq \theta < 360^\circ$.

Score: 4 The student gave a complete and correct response.
38 Solve $2\cos^2 \theta = \cos \theta$ for all values of θ in the interval $0^\circ \leq \theta < 360^\circ$.

Let $u = \cos \theta$

\[2u^2 + u - u = 0\]
\[2u^2 - u = 0\]
\[u(2u-1) = 0\]

\[u = 0\] or \[2u-1 = 0\]

\[u = \frac{1}{2}\]

\[\cos \theta = 0\] or \[\cos \theta = \frac{1}{2}\]

\[\theta = 90^\circ, 270^\circ\] or \[\theta = 60^\circ, 300^\circ\]

Score: 4 The student gave a complete and correct response.
38 Solve $2\cos^2 \theta = \cos \theta$ for all values of θ in the interval $0^\circ \leq \theta < 360^\circ$.

Score: 3 The student made an error by stating 180° instead of 270°.
Question 38

38 Solve $2\cos^2 \theta = \cos \theta$ for all values of θ in the interval $0^\circ \leq \theta < 360^\circ$.

Score: 3 The student made a graphing error by graphing $\cos^2 \theta$ instead of $2\cos^2 \theta$.
Question 38

38 Solve \(2\cos^2 \theta = \cos \theta\) for all values of \(\theta\) in the interval \(0^\circ \leq \theta < 360^\circ\).

\[
\frac{2 \cos^2 \theta}{\cos \theta} = \frac{\cos \theta}{\cos \theta}
\]

\[
\frac{2 \cos \theta}{2} = \frac{1}{2}
\]

\[
\cos \theta = \frac{1}{2}
\]

\[
\theta = 60^\circ \text{ and } 300^\circ
\]

Score: 2 The student made a conceptual error by dividing both sides by \(\cos \theta\).
38 Solve $2\cos^2 \theta = \cos \theta$ for all values of θ in the interval $0^\circ \leq \theta < 360^\circ$.

Score: 2 The student did not use $a = 0$.
38 Solve \(2\cos^3 \theta = \cos \theta\) for all values of \(\theta\) in the interval \(0^\circ \leq \theta < 360^\circ\).

\[
\begin{align*}
2\cos^2 \theta - \cos \theta &= 0 \\
\cos \theta (2\cos \theta - 1) &= 0 \\
\cos \theta &= 0 \quad 2\cos \theta - 1 = 0 \\
\cos \theta &= 0 \quad \cos \theta = \frac{1}{2} \\
\theta &= 60^\circ \quad \theta = 90^\circ
\end{align*}
\]

Score: 2 The student only found the two angles.
38 Solve $2\cos^2 \theta = \cos \theta$ for all values of θ in the interval $0^\circ \leq \theta < 360^\circ$.

Score: 1 The student made a conceptual error by dividing both sides by $\cos \theta$, and then only found the one angle.
Question 38

38 Solve $2\cos^2 \theta = \cos \theta$ for all values of θ in the interval $0^\circ \leq \theta < 360^\circ$.

Score: 0 The student made a conceptual error by dividing by $\cos \theta$ and then stated $\cos \theta = 60$, and did not find 300.
Solve for p algebraically: $\log_{16} \left(\frac{p^2 - p + 4}{2p + 11} \right) = \frac{3}{4}$
39 Solve for p algebraically: $\log_{16} \left(\frac{p^2 - p + 4}{2p + 11} \right) - \log_{16} (2p + 11) = \frac{3}{4}$

\[
\log_{16} \frac{p^2 - p + 4}{2p + 11} = \frac{3}{4}
\]

\[
\frac{p^2 - p + 4}{2p + 11} = 16^{\frac{3}{4}}
\]

\[
8 = p^2 - p + 4
\]

\[
p^2 - 17p - 84 = 0
\]

\[
p = 17 \pm \sqrt{17^2 - 4(-84)}
\]

\[
p = 17 \pm \sqrt{49\cdot 5}
\]

\[
p = 21 \quad p = -4
\]

Score: 6 The student gave a complete and correct response.
Question 39

39 Solve for p algebraically: \[\log_{16} \left(\frac{p^2 - p + 4}{2p + 11} \right) = \frac{3}{4} \]

\[\frac{p^2 - p + 4}{2p + 11} = 16^{\frac{3}{4}} \]
\[\frac{p^2 - p + 4}{2p + 11} = 4 \]
\[4(2p + 11) = p^2 - p + 4 \]
\[8p + 44 = p^2 - p + 4 \]
\[0 = p^2 - 9p - 40 \]
\[(p - 21)(p + 4) = 0 \]
\[p = 21 \text{ or } p = -4 \]

Score: 5 The student made an error by rejecting $p = 21$.
Question 39

39 Solve for p algebraically: $\log_{16} \left(\frac{p^2 - p + 4}{2p + 11} \right) = \frac{3}{4}$

\[\log_{16} \left(\frac{p^2 - p + 4}{2p + 11} \right) = \frac{3}{4} \]

\[16^{\frac{3}{4}} = \frac{p^2 - p + 4}{2p + 11} \]

\[8 = \frac{p^2 - p + 4}{2p + 11} \]

\[8(2p + 11) = p^2 - p + 4 \]

\[16p + 88 = p^2 - p + 4 \]

\[-p^2 - p + 16p + 88 - 4 = 0 \]

\[-p^2 + 15p + 84 = 0 \]

\[p^2 - 15p - 84 = 0 \]

\[p = \frac{15 \pm \sqrt{225 + 336}}{2} \]

\[p = \frac{15 \pm \sqrt{561}}{2} \]

Score: 5 The student made a sign error when moving p to the other side of the equation.
39 Solve for p algebraically: \[\log_{16} \left(\frac{p^2 - p + 4}{2p + 11} \right) - \log_{16} (2p + 11) = \frac{3}{4} \]

\[
\frac{3}{4} = \frac{p^2 - p + 4}{2p + 11}
\]

\[
(2p + 11) \left(\frac{3}{4} \right) = \frac{p^2 - p + 4}{2p + 11} (2p + 11)
\]

\[
2p + 88 = p^2 - p + 4
\]

\[
0 = p^2 - 3p - 84
\]

\[
x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(-84)}}{2(1)}
\]

\[
x = \frac{3 \pm \sqrt{9 + 334}}{2}
\]

\[
x = \frac{3 \pm \sqrt{345}}{2}
\]

Score: 4 The student made an error using the distributive property and did not reject

\[
\frac{3}{2} \neq \frac{\sqrt{345}}{2}.
\]
Question 39

39 Solve for \(p \) algebraically: \(\log_{16} \left(\frac{p^2 - p + 4}{2p + 11} \right) - \log_{16} (2p + 11) = \frac{3}{4} \)

\[
\log_{16} \frac{p^2 - p + 4}{2p + 11} = \frac{3}{4}
\]

\[
\frac{p^2 - p + 4}{2p + 11} = 16^{\frac{3}{4}} = \left(\sqrt[4]{16}\right)^3 = 2^3 = 8
\]

\[
p^2 - p + 4 = 16p + 88
\]

\[
p^2 - 17p - 84 = 0
\]

\[
p = \frac{17 \pm \sqrt{289 - (-336)}}{2}
\]

Score: 4 The student made a correct substitution into the quadratic formula, but showed no further work.
39 Solve for \(p \) algebraically: \(\log_{16} \left(\frac{p^2 - p + 4}{2p + 11} \right) - \log_{16} (2p + 11) = \frac{3}{4} \)

Score: 3 The student wrote a correct quadratic equation.
39 Solve for p algebraically: $\log_{16} \left(\frac{p^2 - p + 4}{2p + 11} \right) = \frac{3}{4}$

\[
\log_{16} p^2 - 3p - 7 = \frac{3}{4}
\]

\[
16 = p^2 - 3p - 7
\]

\[
8 = p^2 - 3p - 7
\]

\[
-8
\]

\[
p^2 - 3p - 15 = 0
\]

\[
p = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 1 \cdot (-15)}}{2 \cdot 1}
\]

\[
p = \frac{3 \pm \sqrt{69}}{2}
\]

Score: 3 The student made a conceptual error by subtracting the polynomials instead of dividing them.
39 Solve for p algebraically: $\log_{16} \left(\frac{p^2 - p + 4}{2p + 11} \right) - \log_{16} (2p + 11) = \frac{3}{4}$

\[
\frac{\log_{16} \left(\frac{p^2 - p + 4}{2p + 11} \right)}{2p + 11} = \frac{3}{4}
\]
\[
16^{3/4} = \frac{p^2 - p + 4}{2p + 11}
\]

\[
y = 8 \rightarrow x = 21
\]

Score: 2 The student stated the equation in exponential form, but did not obtain 21 by an algebraic method.
39 Solve for p algebraically: $\log_{16} \left(\frac{p^2 - p + 4}{2p + 11} \right) = \frac{3}{4}$

\[
\frac{3}{4} = \frac{p^2 - p + 4}{2p + 11}
\]

Score: 2 The student stated the equation correctly in exponential form.
39 Solve for \(p \) algebraically: \(\log_{16} (p^2 - p + 4) - \log_{16} (2p + 11) = \frac{3}{4} \)

Score: 1 The student rewrote the log equation correctly.
Question 39

39 Solve for p algebraically: \(\log_{16} (p^2 - p + 4) - \log_{16} (2p + 11) = \frac{3}{4} \)

\[
\begin{align*}
\log_{16} \frac{2p+11}{p^2-p+4} &= \frac{3}{4} \\
\log_{16} \frac{3y}{16} &= \frac{2p+11}{p^2-p+4} \\
p^2-p+4 &= \left(\frac{2p+11}{p^2-p+4} \right) p^2-p+4 \\
8p^2-8p+32 &= 2p+11 \\
-2p - 11 &= -2p - 11 \\
8p^2-10p+21 &= 0 \\
m=168 \\
a=-10
\end{align*}
\]

Score: 1 The student made a conceptual error in rewriting the log equation, but did write an appropriate exponential equation.
39 Solve for p algebraically: $\log_{16} \left(\frac{p^2 - p + 4}{(2p + 11)} \right) - \log_{16} (2p + 11) = \frac{3}{4}$

\[
\begin{align*}
\log_{16} \left(\frac{p^2 - p + 4}{(2p + 11)} \right) &= \frac{3}{4} \\
\frac{p^2 - p + 4}{(2p + 11)} &= 16^{\frac{3}{4}} \\
\frac{p^2 - p + 4}{(2p + 11)} &= 2^3 \\
p^2 - p + 4 &= 8(2p + 11) \\
p^2 - p + 4 &= 16p + 88 \\
p^2 - p - 83 &= 0 \\
-3 &\pm \sqrt{3^2 - 4(1)(-83)} = 0 \\
\end{align*}
\]

\[
\begin{align*}
p^2 &= (2p+3)(p-3) \\
(-3+p) + (2p+3)(p-3)(p+2) &= 0
\end{align*}
\]

Score: 0 The student wrote a completely incorrect response. No credit is given for finding 8.
39 Solve for \(p \) algebraically: \(\log_{16} \left(p^2 - p + 4 \right) - \log_{16} \left(2p + 11 \right) = \frac{3}{4} \)

\[
\begin{align*}
12 &= \frac{p^2 - p + 4}{3p + 11} \\
34p + 132 &= p^2 - p + 4 \\
p^2 - 33p - 128 &= 0 \\
(p - 32)(p + 4) &= 0 \\
p &= 32 \text{ or } p = -4
\end{align*}
\]

Score: 0 The student made a conceptual error by evaluating \(16 \left(\frac{3}{4} \right) \) followed by several computational errors, a factoring error, and did not reject \(p = -32 \).