The University of the State of New York
REGENTS HIGH SCHOOL EXAMINATION

ALGEBRA II

Wednesday, August 14, 2019 — 12:30 to 3:30 p.m., only

MODEL RESPONSE SET

Table of Contents

Question 25 2
Question 26 7
Question 27 11
Question 28 16
Question 29 19
Question 30 23
Question 31 28
Question 32 32
Question 33 37
Question 34 44
Question 35 49
Question 36 55
Question 37 63
25 At Andrew Jackson High School, students are only allowed to enroll in AP U.S. History if they have already taken AP World History or AP European History. Out of 825 incoming seniors, 165 took AP World History, 66 took AP European History, and 33 took both. Given this information, determine the probability a randomly selected incoming senior is allowed to enroll in AP U.S. History.

\[
\frac{165}{825} + \frac{66}{825} - \frac{33}{825} = \frac{198}{825}
\]

Score 2: The student gave a complete and correct response.
25 At Andrew Jackson High School, students are only allowed to enroll in AP U.S. History if they have already taken AP World History or AP European History. Out of 825 incoming seniors, 165 took AP World History, 66 took AP European History, and 33 took both. Given this information, determine the probability a randomly selected incoming senior is allowed to enroll in AP U.S. History.

\[
\frac{165}{825} = \text{AP World History students} \\
\frac{66}{825} = \text{AP European History students} \\
\frac{33}{825} = \text{World and Euro}
\]

\[
P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) \\
= \frac{165}{825} + \frac{66}{825} - \frac{33}{825} \\
= \frac{231}{825} - \frac{33}{825} \\
= \frac{198}{825}
\]

\[
P(A \text{ or } B) = \frac{198}{825}
\]

\[
= 0.24 \text{ or } 24\% \text{ will be allowed to enroll in AP U.S. History}
\]

Score 2: The student gave a complete and correct response.
25 At Andrew Jackson High School, students are only allowed to enroll in AP U.S. History if they have already taken AP World History or AP European History. Out of 825 incoming seniors, 165 took AP World History, 66 took AP European History, and 33 took both. Given this information, determine the probability a randomly selected incoming senior is allowed to enroll in AP U.S. History.

\[
\frac{33}{825} + \frac{165}{825} + \frac{66}{825} = \frac{264}{825} = \frac{8}{25}
\]

Score 1: The student misapplied the addition rule.
At Andrew Jackson High School, students are only allowed to enroll in AP U.S. History if they have already taken AP World History or AP European History. Out of 825 incoming seniors, 165 took AP World History, 66 took AP European History, and 33 took both. Given this information, determine the probability a randomly selected incoming senior is allowed to enroll in AP U.S. History.

\[
\begin{align*}
\text{seniors} &= 825 \\
\text{AP WH} &= 165 \\
\text{AP EH} &= 66 \\
\text{both} &= 33 \\
132 + 33 + 33 &= 198 \\
\end{align*}
\]

Score 1: The student did not divide by 825.
Question 25

25 At Andrew Jackson High School, students are only allowed to enroll in AP U.S. History if they have already taken AP World History or AP European History. Out of 825 incoming seniors, 165 took AP World History, 66 took AP European History, and 33 took both. Given this information, determine the probability a randomly selected incoming senior is allowed to enroll in AP U.S. History.

\[
\text{825 in total, 165 took AP Wh, 66 took AP Eu, 33 took both}
\]

Score 0: The student did not show enough correct work to receive any credit.
26 Explain what a rational exponent, such as $\frac{5}{2}$ means. Use this explanation to evaluate $9^{\frac{5}{2}}$.

The numerator is the power which the base is raised to and the denominator is the root.

$$\sqrt[5]{9^8} = \sqrt[2]{243}$$

Score 2: The student gave a complete and correct response.
26 Explain what a rational exponent, such as $\frac{5}{2}$ means. Use this explanation to evaluate $9^{\frac{5}{2}}$.

A Fraction

represents $\frac{5}{2}$

\[\sqrt[2]{9} = 3 \]

\[3^5 = 243 \]

\[\frac{5}{2} \]

Score 2: The student gave a complete and correct response.
26 Explain what a rational exponent, such as $\frac{5}{2}$ means. Use this explanation to evaluate $9^{\frac{5}{2}}$.

$\sqrt[2]{5}$, as a rational exponent means 5 halves. This can be rationalized to 2.5, by dividing 5 and 2. $9^{\frac{5}{2}}$, can be evaluated by multiplying 9 by itself 2.5 times, to which you arrive at an answer of 243.

Score 1: The student gave an incomplete explanation.
<table>
<thead>
<tr>
<th>Question 26</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 Explain what a rational exponent, such as $\frac{5}{2}$ means. Use this explanation to evaluate $9^{\frac{5}{2}}$.</td>
</tr>
</tbody>
</table>

| Score 0: | The student did not provide a correct explanation. |
27 Write $-\frac{1}{2}i^3(\sqrt{-9} - 4) - 3i^2$ in simplest $a + bi$ form.

\[
\frac{1}{2}i(\sqrt{-9} - 4) + 3
\]
\[
\frac{1}{2}i(3i - 4) + 3
\]

$1.5i^2 - 2i + 3$

$-1.5 - 2i + 3$

\[1.5 - 2i\]

Score 2: The student gave a complete and correct response.
27 Write \(-\frac{1}{2}i^3(\sqrt{-9} - 4) - 3i^2\) in simplest \(a + bi\) form.

\[
\begin{align*}
-\frac{1}{2}i^3(\sqrt{-9} - 4) - 3i^2 &= \frac{1}{2}i(3i - 4) + 3 \\
&= \frac{-3}{2} - 2i + 3 \\
&= -2i + \frac{3}{2}
\end{align*}
\]

Score 2: The student gave a complete and correct response.
Question 27

27 Write $-\frac{1}{2}i^3(\sqrt{-9} - 4) - 3i^2$ in simplest $a + bi$ form.

\[
\frac{1}{2}i(\sqrt{-9} - 4) - 3i^2
\]

\[
\frac{1}{2}i(3i - 4) - 3
\]

\[
1.5i^2 - 2i - 3
\]

\[
1.5 - 2i - 3
\]

\[
-1.5 - 2i
\]

Score 1: The student incorrectly substituted for i^2.

Algebra II – Aug. ’19
27 Write $-\frac{1}{2}i^3(\sqrt{-9} - 4) - 3i^2$ in simplest $a + bi$ form.

Score 1: The student made one computational error.
27 Write \(-\frac{1}{2}i^3(\sqrt{-9} - 4) - 3i^2\) in simplest \(a + bi\) form.

\[-\frac{1}{2}i^3(\sqrt{-9} - 4) - 3i^2\]

\[\begin{align*}
&= \frac{1}{2}i^3(-3 - 4) + 3 \\
&= \frac{1}{2}i(-3) + 3 \\
&= \frac{3}{2}i - 4
\end{align*}\]

Score 0: The student made multiple computational errors.
28 A person’s lung capacity can be modeled by the function \(C(t) = 250\sin\left(\frac{2\pi}{5} t\right) + 2450 \), where \(C(t) \) represents the volume in mL present in the lungs after \(t \) seconds. State the maximum value of this function over one full cycle, and explain what this value represents.

\[
\text{max value} = M + A \\
M = 2450 \text{ = midline} \\
A = 250 \text{ = amplitude}
\]

\[
\text{max} = 2450 + 250 \\
\text{max} = 2700
\]

2700 represents the maximum amount of air a person’s lungs can hold in milliliters.

Score 2: The student gave a complete and correct response.
A person’s lung capacity can be modeled by the function \(C(t) = 250\sin\left(\frac{2\pi}{5}t\right) + 2450 \), where \(C(t) \) represents the volume in mL present in the lungs after \(t \) seconds. State the maximum value of this function over one full cycle, and explain what this value represents.

On calculator:
\[
y_1 = 250\sin\left(\frac{2\pi}{5}t\right) + 2450
\]

2nd calc at: maximum (498.75, 2700)

Max = 2700

After 2700 seconds a person’s lung capacity has expanded completely.

Score 1: The student gave an incorrect explanation.
28 A person’s lung capacity can be modeled by the function $C(t) = 250\sin\left(\frac{2\pi}{5}t\right) + 2450$, where $C(t)$ represents the volume in mL present in the lungs after t seconds. State the maximum value of this function over one full cycle, and explain what this value represents.

The maximum value of this function over one full cycle is 2450 mL.
Question 29

29 Determine for which polynomial(s) \((x + 2)\) is a factor. Explain your answer.

\[P(x) = x^4 - 3x^3 - 16x - 12 \]
\[Q(x) = x^3 - 3x^2 - 16x - 12 \]

\[P(-2) = 0 \quad \quad \quad Q(-2) = 0 \]

\(Q(x)\) since \(Q(-2) = 0\)

\((x+2)\) must be a factor

Score 2: The student gave a complete and correct response.
29 Determine for which polynomial(s) \((x + 2)\) is a factor. Explain your answer.

\[
P(x) = x^4 - 3x^3 - 16x - 12 \\
Q(x) = x^3 - 3x^2 - 16x - 12
\]

\[
P(-2) = \left(-2\right)^4 - 3\left(-2\right)^3 - 16\left(-2\right) - 12 \\
= 16 + 24 + 32 - 12 \\
= 60
\]

\[
Q(-2) = \left(-2\right)^3 - 3\left(-2\right)^2 - 16\left(-2\right) - 12 \\
= -8 + 12 + 32 - 12 \\
= 0
\]

\((x + 2)\) is a factor of \(Q(x) = x^3 - 3x^2 - 16x - 12\) because \(-2\) equals zero.

Score 1: The student gave an incomplete explanation.
29 Determine for which polynomial(s) \((x + 2)\) is a factor. Explain your answer.

\[P(x) = x^4 - 3x^3 - 16x - 12 \]
\[Q(x) = x^3 - 3x^2 - 16x - 12 \]

\[\begin{array}{cccc}
1 & -3 & -16 & -12 \\
-2 & -2 & 10 & 12 \\
1 & -5 & -6 & 0 \\
\end{array} \]

\[(x+2)(x^2-5x-6) = Q(x) \]

\[Q(x) \]

Score 1: The student gave no explanation.
29 Determine for which polynomial(s) \((x + 2)\) is a factor. Explain your answer.

\[P(x) = x^4 - 3x^3 - 16x - 12 \]
\[Q(x) = x^3 - 3x^2 - 16x - 12 \]

\[
\begin{align*}
\text{X}^3(\text{X} - 3) - 4(4\text{X} - 3) & \quad \text{X}^2(\text{X} - 3) - 4(4\text{X} + 3) \\
(\text{X}^2 + 4)(\text{X} - 3)(4\text{X} + 3) & \quad (\text{X} + 2)(\text{X} - 2) \\
\end{align*}
\]

\[Q(x) = x^3 - 3x^2 - 16x - 12 \]

when factored, it leaves you with a solution of \((x + 2)\)

Score 0: The student made multiple errors.
30 On July 21, 2016, the water level in Puget Sound, WA reached a high of 10.1 ft at 6 a.m. and a low of −2 ft at 12:30 p.m. Across the country in Long Island, NY, Shinnecock Bay’s water level reached a high of 2.5 ft at 10:42 p.m. and a low of −0.1 ft at 5:31 a.m.

The water levels of both locations are affected by the tides and can be modeled by sinusoidal functions. Determine the difference in amplitudes, in feet, for these two locations.

Score 2: The student gave a complete and correct response.
On July 21, 2016, the water level in Puget Sound, WA reached a high of 10.1 ft at 6 a.m. and a low of −2 ft at 12:30 p.m. Across the country in Long Island, NY, Shinnecock Bay’s water level reached a high of 2.5 ft at 10:42 p.m. and a low of −0.1 ft at 5:31 a.m.

The water levels of both locations are affected by the tides and can be modeled by sinusoidal functions. Determine the difference in amplitudes, in feet, for these two locations.

Score 2: The student gave a complete and correct response.
On July 21, 2016, the water level in Puget Sound, WA reached a high of 10.1 ft at 6 a.m. and a low of −2 ft at 12:30 p.m. Across the country in Long Island, NY, Shinnecock Bay’s water level reached a high of 2.5 ft at 10:42 p.m. and a low of −0.1 ft at 5:31 a.m.

The water levels of both locations are affected by the tides and can be modeled by sinusoidal functions. Determine the difference in amplitudes, in feet, for these two locations.

Puget Sound, WA
high 10.1 ft.
low −2 ft

Long Island, NY
high 2.5 ft
low −0.1

Difference: $\frac{10.1 - 2.6}{9.5}$

Score 1: The student made an error finding the amplitudes.
On July 21, 2016, the water level in Puget Sound, WA reached a high of 10.1 ft at 6 a.m. and a low of −2 ft at 12:30 p.m. Across the country in Long Island, NY, Shinnecock Bay’s water level reached a high of 2.5 ft at 10:42 p.m. and a low of −0.1 ft at 5:31 a.m.

The water levels of both locations are affected by the tides and can be modeled by sinusoidal functions. Determine the difference in amplitudes, in feet, for these two locations.

\[\text{Score 1: The student did not determine the difference in amplitudes.} \]
30 On July 21, 2016, the water level in Puget Sound, WA reached a high of 10.1 ft at 6 a.m. and a low of −2 ft at 12:30 p.m. Across the country in Long Island, NY, Shinnecock Bay’s water level reached a high of 2.5 ft at 10:42 p.m. and a low of −0.1 ft at 5:31 a.m.

The water levels of both locations are affected by the tides and can be modeled by sinusoidal functions. Determine the difference in amplitudes, in feet, for these two locations.

\[
\text{AMP} = \max \ - \ \min \\
A_1 = 10.1 \text{ ft} - (-2 \text{ ft}) \\
A_2 = 2.5 \text{ ft} - (-0.1 \text{ ft}) \\
\text{AMP}_1 = 12 \\
\text{AMP}_2 = 2.5 \\
12 - 2.5 / = 9.49
\]
31 Write a recursive formula, a_n, to describe the sequence graphed below.

\[a_n = \begin{cases} 1 & n = 1 \\ 4 \times 3^{n-1} & n \geq 2 \end{cases} \]

\[a_1 = 4, \quad a_n = 3a_{n-1} \]

Score 2: The student gave a complete and correct response.
31 Write a recursive formula, a_n, to describe the sequence graphed below.

Score 1: The student wrote an explicit formula.
31 Write a recursive formula, a_n, to describe the sequence graphed below.

\[a_1 = 4 \]

\[a_n = 3 \cdot a_{n-1} \]

Score 1: The student made a notation error.
31 Write a recursive formula, a_n, to describe the sequence graphed below.

Score 0: The student did not show enough correct work to receive any credit.
32 Sketch the graphs of $r(x) = \frac{1}{x}$ and $a(x) = |x| - 3$ on the set of axes below. Determine, to the nearest tenth, the positive solution of $r(x) = a(x)$.

Score 2: The student gave a complete and correct response.
32 Sketch the graphs of $r(x) = \frac{1}{x}$ and $a(x) = |x| - 3$ on the set of axes below. Determine, to the nearest tenth, the positive solution of $r(x) = a(x)$.

Score 2: The student gave a complete and correct response.
32 Sketch the graphs of $r(x) = \frac{1}{x}$ and $a(x) = |x| - 3$ on the set of axes below. Determine, to the nearest tenth, the positive solution of $r(x) = a(x)$.

Score 1: The student made an error when sketching $r(x)$.

Algebra II – Aug. ’19
32 Sketch the graphs of $r(x) = \frac{1}{x}$ and $a(x) = |x| - 3$ on the set of axes below. Determine, to the nearest tenth, the positive solution of $r(x) = a(x)$.

Score 1: The student did not state the solution of $r(x) = a(x)$.
32 Sketch the graphs of \(r(x) = \frac{1}{x} \) and \(a(x) = |x| - 3 \) on the set of axes below. Determine, to the nearest tenth, the positive solution of \(r(x) = a(x) \).

Score 0: The student did not show enough correct work to receive any credit.
A population of 950 bacteria grows continuously at a rate of 4.75% per day.

Write an exponential function, \(N(t) \), that represents the bacterial population after \(t \) days and explain the reason for your choice of base.

\[
N(t) = 950e^{0.0475 \cdot t}
\]

The bacteria grows continuously.

Determine the bacterial population after 36 hours, to the nearest bacterium.

\[
N(t) = 950e^{0.0475 \cdot \frac{36}{24}}
\]

\[
N(t) = 1020
\]

Score 4: The student gave a complete and correct response.
33 A population of 950 bacteria grows continuously at a rate of 4.75% per day.

Write an exponential function, $N(t)$, that represents the bacterial population after t days and explain the reason for your choice of base.

\[
A = 950 e^{0.0475t}
\]

I chose this because it best explains exponential growth how the bacterium grows 4.75% over t-days.

Determine the bacterial population after 36 hours, to the nearest bacterium.

\[
A = 950e^{0.0475(1.5)} = 950 e^{0.07125}
\]

\[
A = 950(1.07384955) = 1020 \text{ bacterium}
\]

Score 3: The student gave an incomplete explanation for the choice of the base.
Question 33

A population of 950 bacteria grows continuously at a rate of 4.75% per day.

Write an exponential function, $N(t)$, that represents the bacterial population after t days and explain the reason for your choice of base.

$$N(t) = 950e^{0.0475t}$$

(e because continuously)

Determine the bacterial population after 36 hours, to the **nearest bacterium**.

5225.813404

≈ 5226 bacterium

Score 2: The student received full credit for the first part.
A population of 950 bacteria grows continuously at a rate of 4.75% per day.

Write an exponential function, \(N(t) \), that represents the bacterial population after \(t \) days and explain the reason for your choice of base.

\[
N(t) = (950)e^{0.0475t}
\]

Determine the bacterial population after 36 hours, to the nearest bacterium.

\[
N(36) = 950e^{0.0475(36)}
\]

\[
N(36) = 980.67172
\]

Score 2: The student gave no explanation and made a rounding error in the second part.
33 A population of 950 bacteria grows continuously at a rate of 4.75% per day.

Write an exponential function, \(N(t) \), that represents the bacterial population after \(t \) days and explain the reason for your choice of base.

\[
N(t) = 950 \cdot e^{0.0475t}
\]

\(\downarrow \)

\(\Rightarrow \) function increases

\(\text{initial} \quad \text{continuously} \quad \text{(e) must be} \)

\(\text{used} \)

Determine the bacterial population after 36 hours, to the nearest bacterium.

\[
N(36) = 950(e^{0.0475(36)})
\]

\[
N(36) = 5253
\]

Score 1: The student gave a correct explanation for the choice of base.
33 A population of 950 bacteria grows continuously at a rate of 4.75% per day.

Write an exponential function, \(N(t) \), that represents the bacterial population after \(t \) days and explain the reason for your choice of base.

\[
N(t) = 950(e)^{0.0475t}
\]

Determine the bacterial population after 36 hours, to the nearest bacterium.

\[
N(t) = 950(e)^{4.75 \cdot 36}
\]

\[
N(t) = 950(8.28364914286)
\]

\[
N(t) \approx 5283
\]

Score 1: The student created a correct equation.
A population of 950 bacteria grows continuously at a rate of 4.75% per day.

Write an exponential function, \(N(t) \), that represents the bacterial population after \(t \) days and explain the reason for your choice of base.

\[
N(t) = 950 \left(1.0475 \right)^t
\]

The starting value of the strain is 950 bacteria, the rate is 4.75% growth/day.

Determine the bacterial population after 36 hours, to the nearest bacterium.

\[
N(36) = 950 \left(1.0475 \right)^{36}
\]

\[
= 950 \left(1.0475 \right)^{36}
\]

\[
= 950 \times 1.25 \times 36
\]

\[
= 3 \times 10^9
\]

Score 0: The student did not show enough correct work to receive any credit.
Question 34

34 Write an equation for a sine function with an amplitude of 2 and a period of \(\frac{\pi}{2} \).

\[y = 2 \sin 4x \]

On the grid below, sketch the graph of the equation in the interval 0 to 2\(\pi \).

Score 4: The student gave a complete and correct response.
34 Write an equation for a sine function with an amplitude of 2 and a period of $\frac{\pi}{2}$.

$$2\sin 4x$$

On the grid below, sketch the graph of the equation in the interval 0 to 2π.

Score 3: The student made a notation error writing the equation.
Question 34

34 Write an equation for a sine function with an amplitude of 2 and a period of $\frac{\pi}{2}$.

$$0.5, 0, -1, 0$$

On the grid below, sketch the graph of the equation in the interval 0 to 2π.

Score 2: The student sketched a correct graph.
34 Write an equation for a sine function with an amplitude of 2 and a period of $\frac{\pi}{2}$.

$$y = 2 \sin \left(\frac{x}{2} \right)$$

On the grid below, sketch the graph of the equation in the interval 0 to 2π.

Score 1: The student received one credit for the sketch.
Question 34

34 Write an equation for a sine function with an amplitude of 2 and a period of $\frac{\pi}{2}$.

On the grid below, sketch the graph of the equation in the interval 0 to 2π.

Score 0: The student did not show enough correct work to receive any credit.
35 Mary bought a pack of candy. The manufacturer claims that 30% of the candies manufactured are red. In her pack, 14 of the 60 candies are red. She ran a simulation of 300 samples, assuming the manufacturer is correct. The results are shown below.

Based on the simulation, determine the middle 95% of plausible values that the proportion of red candies in a pack is within.

\[
0.301 - 2(0.058) < \hat{p} < 0.301 + 2(0.058)
\]

\[
0.185 < \hat{p} < 0.417
\]

Based on the simulation, is it unusual that Mary’s pack had 14 red candies out of a total of 60? Explain.

\[
\frac{14}{60} = 0.23
\]

No, it is not unusual that Mary’s pack had 14 out of 60 because that proportion lies within the middle 95% plausible values.

Score 4: The student gave a complete and correct response.
Mary bought a pack of candy. The manufacturer claims that 30% of the candies manufactured are red. In her pack, 14 of the 60 candies are red. She ran a simulation of 300 samples, assuming the manufacturer is correct. The results are shown below.

Based on the simulation, determine the middle 95% of plausible values that the proportion of red candies in a pack is within.

\[0.185 \leq x \leq 0.417 \]

Based on the simulation, is it unusual that Mary’s pack had 14 red candies out of a total of 60? Explain.

No because the proportion of red candies to the total would equal 0.233 which falls in the 99% range of plausible values.

Score 3: The student made a transcription error.
Question 35

Mary bought a pack of candy. The manufacturer claims that 30% of the candies manufactured are red. In her pack, 14 of the 60 candies are red. She ran a simulation of 300 samples, assuming the manufacturer is correct. The results are shown below.

Based on the simulation, determine the middle 95% of plausible values that the proportion of red candies in a pack is within.

Mean = 0.301
SD = 0.058

Based on the simulation, is it unusual that Mary’s pack had 14 red candies out of a total of 60? Explain.

No, it isn’t because 0.233 falls in the 95% of plausible values.
Question 35

35 Mary bought a pack of candy. The manufacturer claims that 30% of the candies manufactured are red. In her pack, 14 of the 60 candies are red. She ran a simulation of 300 samples, assuming the manufacturer is correct. The results are shown below.

Based on the simulation, determine the middle 95% of plausible values that the proportion of red candies in a pack is within.

Within 0.185 to 0.417 95%.

Based on the simulation, is it unusual that Mary’s pack had 14 red candies out of a total of 60? Explain.

Yes, it is within the 95%.

Score 2: The student answered the first part correctly.
35 Mary bought a pack of candy. The manufacturer claims that 30% of the candies manufactured are red. In her pack, 14 of the 60 candies are red. She ran a simulation of 300 samples, assuming the manufacturer is correct. The results are shown below.

Based on the simulation, determine the middle 95% of plausible values that the proportion of red candies in a pack is within.

\[
\frac{14}{60} = 0.233
\]

\[
0.301 + 0.058 = 0.359 \quad 0.301 - 0.058 = 0.243
\]

\[
0.243 - 0.058 = 0.185
\]

Based on the simulation, is it unusual that Mary’s pack had 14 red candies out of a total of 60? Explain.

No, it is not unusual because 0.23 was recorded many times.

Score 1: The student found the correct proportion.
Based on the simulation, is it unusual that Mary’s pack had 14 red candies out of a total of 60? Explain.

Yes because according to the graph the mean is 0.301.

Score 0: The student did not show enough correct work to receive any credit.
36 a) Algebraically determine the roots, in simplest $a + bi$ form, to the equation below.

$$x^2 - 2x + 7 = 4x - 10$$

$$x^2 - 6x + 17 = 0$$

$$\frac{6 \pm \sqrt{36 - 4(1)(17)}}{2}$$

$$\frac{6 \pm \sqrt{-32}}{2}$$

$$\frac{6 \pm 4i\sqrt{2}}{2}$$

$$3 \pm 2i\sqrt{2}$$

b) Consider the system of equations below.

$$y = x^2 - 2x + 7$$
$$y = 4x - 10$$

The graph of this system confirms the solution from part a is imaginary. Explain why.

The equation can be concluded to have imaginary roots based on observing the graph because the system does not have any solutions; rather, the equations do not intersect. Because the system of the two equations has no solution, we can conclude that setting the two equations equal to each other will not yield any real roots.

Score 4: The student gave a complete and correct response.
36 a) Algebraically determine the roots, in simplest $a + bi$ form, to the equation below.

$$x^2 - 2x + 7 = 4x - 10$$

$$x^2 - 2x + 7 = 4x - 10$$

$$\frac{1}{4}$$

$$x = \frac{6 \pm \sqrt{16 - 4(1)(7)}}{2}$$

$$x = \frac{6 \pm \sqrt{41}}{2}$$

$$x = 3 \pm 2i \sqrt{2}$$

b) Consider the system of equations below.

$$y = x^2 - 2x + 7$$

$$y = 4x - 10$$

The graph of this system confirms the solution from part a is imaginary. Explain why.

Score 4: The student gave a complete and correct response.
36 a) Algebraically determine the roots, in simplest $a + bi$ form, to the equation below.

$$x^2 - 2x + 7 = 4x - 10$$

$$x^2 - 6x + 17 = 0$$

$$x = \frac{6 \pm \sqrt{-32}}{2}$$

$$x = 3 \pm 2i\sqrt{2}$$

b) Consider the system of equations below.

$$y = x^2 - 2x + 7$$

$$y = 4x - 10$$

The graph of this system confirms the solution from part a is imaginary. Explain why.

Because when graphed, the parabola never crosses the line so it doesn’t have any roots that are real, just imaginary.

Score 3: The student made a computational error.
Question 36

36 a) Algebraically determine the roots, in simplest $a + bi$ form, to the equation below.

$$x^2 - 2x + 7 = 4x - 10$$

$$x^2 - 6x + 17 = 0$$

$$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(17)}}{2(1)}$$

$$x = \frac{6 \pm \sqrt{-32}}{2}$$

$$x = \frac{6 \pm 4i \sqrt{2}}{2}$$

$$x = 3 \pm 2i \sqrt{2}$$

b) Consider the system of equations below.

$$y = x^2 - 2x + 7$$

$$y = 4x - 10$$

The graph of this system confirms the solution from part a is imaginary. Explain why.

If the system does not intersect.

Score 3: The student gave an incomplete explanation.
36 a) Algebraically determine the roots, in simplest $a + bi$ form, to the equation below.

\[
x^2 - 2x + 7 = 4x - 10
\]

\[
\underline{-4x + 10}
\]

\[
x^2 - 6x + 17 = 0
\]

\[
x = \frac{3 \pm \sqrt{9 - 4 \cdot 17}}{2}
\]

b) Consider the system of equations below.

\[
y = x^2 - 2x + 7
\]

\[
y = 4x - 10
\]

The graph of this system confirms the solution from part a is imaginary. Explain why.

It has imaginary roots because the graph shows a parabola and then a straight line for the linear equation, and at no point do they intersect; therefore, it has imaginary roots.

Score 2: The student gave a correct explanation.
36 a) Algebraically determine the roots, in simplest $a + bi$ form, to the equation below.

\[
x^2 - 2x + 7 = 4x - 10
\]

\[
\begin{align*}
-4x+10 & \quad -4x+10 \\
x^2 - 6x + 17 & = 0 \\
17 - 14 & \\
x^2 - 6x + 9 &= -17 + 9 \\
(x-3)^2 & = 9 \\
\pm \sqrt{(x-3)^2} & = \pm 3 \\
x-3 & = \pm 3 \\
x & = 6 \\
x & = 0
\end{align*}
\]

b) Consider the system of equations below.

\[
y = x^2 - 2x + 7 \\
y = 4x - 10
\]

The graph of this system confirms the solution from part a is imaginary. Explain why.

The equation from part a has imaginary roots because ± 3 is a non-real number, so it is imaginary making the equation have imaginary roots.

Score 1: The student completed the square correctly.
36 a) Algebraically determine the roots, in simplest $a + bi$ form, to the equation below.

$$\frac{x^2 - 2x + 7}{x^2 - 4x + 10} = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{6 \pm \sqrt{36 - 4(17)}}{2}$$

The graph of this system confirms the solution from part a is imaginary. Explain why.

b) Consider the system of equations below.

$$y = x^2 - 2x + 7$$
$$y = 4x - 10$$

Because i is an imaginary # and it has i in its solutions.

Score 1: The student solved the quadratic equation, but did not simplify completely.
36 a) Algebraically determine the roots, in simplest \(a + bi \) form, to the equation below.

\[
x^2 - 2x + 7 = 4x - 10
\]

\[
\begin{align*}
 &x^2 - 2x + 7 = 4x - 10 \\
 &\quad \quad \quad \quad + 2x \quad + 2x \\
 &\quad \quad \quad \quad + 10 \quad + 10 \\
 &\quad \quad \quad \quad \sqrt{x^2 + 17} = \frac{10x}{1} \\
 &\quad \quad \quad \quad \frac{10}{1} \\
 &x^2 + 2.8 = x
\end{align*}
\]

b) Consider the system of equations below.

\[
\begin{align*}
y &= x^2 - 2x + 7 \\
y &= 4x - 10
\end{align*}
\]

The graph of this system confirms the solution from part \(a \) is imaginary. Explain why.

Score 0: The student did not show enough correct work to receive any credit.
37 The Beaufort Wind Scale was devised by British Rear Admiral Sir Francis Beaufort, in 1805 based upon observations of the effects of the wind. Beaufort numbers, B, are determined by the equation $B = 1.69 \sqrt{s} + 4.45 - 3.49$, where s is the speed of the wind in mph, and B is rounded to the nearest integer from 0 to 12.

Beaufort Wind Scale

<table>
<thead>
<tr>
<th>Beaufort Number</th>
<th>Force of Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Calm</td>
</tr>
<tr>
<td>1</td>
<td>Light air</td>
</tr>
<tr>
<td>2</td>
<td>Light breeze</td>
</tr>
<tr>
<td>3</td>
<td>Gentle breeze</td>
</tr>
<tr>
<td>4</td>
<td>Moderate breeze</td>
</tr>
<tr>
<td>5</td>
<td>Fresh breeze</td>
</tr>
<tr>
<td>6</td>
<td>Steady breeze</td>
</tr>
<tr>
<td>7</td>
<td>Moderate gale</td>
</tr>
<tr>
<td>8</td>
<td>Fresh gale</td>
</tr>
<tr>
<td>9</td>
<td>Strong gale</td>
</tr>
<tr>
<td>10</td>
<td>Whole gale</td>
</tr>
<tr>
<td>11</td>
<td>Storm</td>
</tr>
<tr>
<td>12</td>
<td>Hurricane</td>
</tr>
</tbody>
</table>

Using the table above, classify the force of wind at a speed of 30 mph. Justify your answer.

\[
B = 1.69 \sqrt{30} + 4.45 - 3.49
\]

\[
B = 6.429306679 \approx 6
\]

Question 37 is continued on the next page.

Score 6: The student gave a complete and correct response.
In 1946, the scale was extended to accommodate strong hurricanes. A strong hurricane received a B value of exactly 15. Algebraically determine the value of s, to the nearest mph.

\[
15 = 1.69 \sqrt{s + 4.45} - 3.49
\]

\[
\frac{18.49}{1.69} = \frac{1.69 \sqrt{s + 4.45}}{1.69} = \frac{1.69}{1.69} \sqrt{s + 4.45} = \frac{(18.49)^2}{1.69} - \frac{4.45}{1.69} = \frac{5 + 4.45}{4.45} = s = 115.2517261
\]

Any B values that round to 10 receive a Beaufort number of 10. Using technology, find an approximate range of wind speeds, to the nearest mph, associated with a Beaufort number of 10.

\[
10 = 1.69 \sqrt{s + 4.45} - 3.49
\]

\[
\frac{13.49^2}{1.69} - \frac{4.45}{1.69} = s = 59.2629145
\]

\[
55 \leq s \leq 64
\]
The Beaufort Wind Scale was devised by British Rear Admiral Sir Francis Beaufort, in 1805 based upon observations of the effects of the wind. Beaufort numbers, B, are determined by the equation $B = 1.69 \sqrt{s} + 4.45 - 3.49$, where s is the speed of the wind in mph, and B is rounded to the nearest integer from 0 to 12.

Using the table above, classify the force of wind at a speed of 30 mph. Justify your answer.

Question 37 is continued on the next page.

Score 5: The student did not classify the force of wind.
In 1946, the scale was extended to accommodate strong hurricanes. A strong hurricane received a B value of exactly 15. Algebraically determine the value of s, to the nearest mph.

Any B values that round to 10 receive a Beaufort number of 10. Using technology, find an approximate range of wind speeds, to the nearest mph, associated with a Beaufort number of 10.
The Beaufort Wind Scale was devised by British Rear Admiral Sir Francis Beaufort, in 1805 based upon observations of the effects of the wind. Beaufort numbers, \(B \), are determined by the equation \(B = 1.69 \sqrt{s} + 4.45 - 3.49 \), where \(s \) is the speed of the wind in mph, and \(B \) is rounded to the nearest integer from 0 to 12.

<table>
<thead>
<tr>
<th>Beaufort Number</th>
<th>Force of Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Calm</td>
</tr>
<tr>
<td>1</td>
<td>Light air</td>
</tr>
<tr>
<td>2</td>
<td>Light breeze</td>
</tr>
<tr>
<td>3</td>
<td>Gentle breeze</td>
</tr>
<tr>
<td>4</td>
<td>Moderate breeze</td>
</tr>
<tr>
<td>5</td>
<td>Fresh breeze</td>
</tr>
<tr>
<td>6</td>
<td>Steady breeze</td>
</tr>
<tr>
<td>7</td>
<td>Moderate gale</td>
</tr>
<tr>
<td>8</td>
<td>Fresh gale</td>
</tr>
<tr>
<td>9</td>
<td>Strong gale</td>
</tr>
<tr>
<td>10</td>
<td>Whole gale</td>
</tr>
<tr>
<td>11</td>
<td>Storm</td>
</tr>
<tr>
<td>12</td>
<td>Hurricane</td>
</tr>
</tbody>
</table>

Using the table above, classify the force of wind at a speed of 30 mph. Justify your answer.

\[
B = 1.69 \sqrt{30} + 4.45 - 3.49
\]

\[
B = 6.429
\]

\(\text{Steady breeze} \)

Question 37 is continued on the next page.
In 1946, the scale was extended to accommodate strong hurricanes. A strong hurricane received a B value of exactly 15. Algebraically determine the value of s, to the nearest mph.

\[
\begin{align*}
15 &= 1.69 - (15 + 4.45) - 3.49 \\
&= 1.69 - 18.49 \\
&= 1.69 - 10.69 \\
&= 0.94(0.984) = (15 + 4.45)^2 \\
&= (15 + 4.45)^2 \\
&= 119.76 \div 261 = 56.45 \\
&= 4.45 \\
&= 115.25 \div 261 = 8 \\
\end{align*}
\]

\[s = 115\]

Any B values that round to 10 receive a Beaufort number of 10. Using technology, find an approximate range of wind speeds, to the nearest mph, associated with a Beaufort number of 10.

\[B = 1.69 - (15 + 4.45) - 3.49 \quad B = 1.69 - (15 + 4.45) - 3.49 \\
B = 9.54 \quad B = 10.389 \quad B = 10 \quad B = 10 \]

\[55 \text{ - } 63 \text{ mph}\]
The Beaufort Wind Scale was devised by British Rear Admiral Sir Francis Beaufort, in 1805 based upon observations of the effects of the wind. Beaufort numbers, \(B \), are determined by the equation \(B = 1.69 \sqrt{s} + 4.45 - 3.49 \), where \(s \) is the speed of the wind in mph, and \(B \) is rounded to the nearest integer from 0 to 12.

Using the table above, classify the force of wind at a speed of 30 mph. Justify your answer.

\[
\begin{array}{|c|c|}
\hline
\text{Beaufort Number} & \text{Force of Wind} \\
\hline
0 & \text{Calm} \\
1 & \text{Light air} \\
2 & \text{Light breeze} \\
3 & \text{Gentle breeze} \\
4 & \text{Moderate breeze} \\
5 & \text{Fresh breeze} \\
6 & \text{Steady breeze} \\
7 & \text{Moderate gale} \\
8 & \text{Fresh gale} \\
9 & \text{Strong gale} \\
10 & \text{Whole gale} \\
11 & \text{Storm} \\
12 & \text{Hurricane} \\
\hline
\end{array}
\]

\[\text{Steady breeze}\]

Score 4: The student did not justify “steady breeze” and made an error when finding the interval.
In 1946, the scale was extended to accommodate strong hurricanes. A strong hurricane received a B value of exactly 15. Algebraically determine the value of s, to the nearest mph.

\[15 = 1.69 \sqrt{s + 4.15} - 3.49 \]
\[18.49 = \frac{1.69}{1.69} \left(\sqrt{s + 4.15} \right) \]
\[18.49 = 1.69 \sqrt{s + 4.15} \]
\[\frac{18.49}{1.69} = \sqrt{s + 4.15} \]
\[s = (\frac{18.49}{1.69})^2 - 4.15 \]
\[s = 115 \text{ mph} \]

Any B values that round to 10 receive a Beaufort number of 10. Using technology, find an approximate range of wind speeds, to the nearest mph, associated with a Beaufort number of 10.

\[9.5 = 1.69 \sqrt{s + 4.15} - 3.49 \]
\[s = 55 \text{ mph} \]
\[10.4 = 1.69 \sqrt{s + 4.15} - 3.49 \]
\[(\frac{13.89}{1.69}) - 4.15 = s \]
\[s = 63 \text{ mph} \]
37 The Beaufort Wind Scale was devised by British Rear Admiral Sir Francis Beaufort, in 1805 based upon observations of the effects of the wind. Beaufort numbers, B, are determined by the equation $B = 1.69 \sqrt{s + 4.45} - 3.49$, where s is the speed of the wind in mph, and B is rounded to the nearest integer from 0 to 12.

<table>
<thead>
<tr>
<th>Beaufort Number</th>
<th>Force of Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Calm</td>
</tr>
<tr>
<td>1</td>
<td>Light air</td>
</tr>
<tr>
<td>2</td>
<td>Light breeze</td>
</tr>
<tr>
<td>3</td>
<td>Gentle breeze</td>
</tr>
<tr>
<td>4</td>
<td>Moderate breeze</td>
</tr>
<tr>
<td>5</td>
<td>Fresh breeze</td>
</tr>
<tr>
<td>6</td>
<td>Steady breeze</td>
</tr>
<tr>
<td>7</td>
<td>Moderate gale</td>
</tr>
<tr>
<td>8</td>
<td>Fresh gale</td>
</tr>
<tr>
<td>9</td>
<td>Strong gale</td>
</tr>
<tr>
<td>10</td>
<td>Whole gale</td>
</tr>
<tr>
<td>11</td>
<td>Storm</td>
</tr>
<tr>
<td>12</td>
<td>Hurricane</td>
</tr>
</tbody>
</table>

Using the table above, classify the force of wind at a speed of 30 mph. Justify your answer.

$$B = 1.69 \sqrt{30 + 4.45} - 3.49 =$$

$$B = 6.4 \text{ Steady Breeze}$$

Question 37 is continued on the next page.

Score 4: The student made a computational error and did not state an interval.
In 1946, the scale was extended to accommodate strong hurricanes. A strong hurricane received a B value of exactly 15. Algebraically determine the value of s, to the nearest mph.

\[
15 = 1.69 \sqrt{5 + 4.45} - 3.49 + 3.49 \\
18.49 = 1.69 \sqrt{5 + 4.45} \\
1.09 = \frac{1}{1.69} \\
(10.941)(\sqrt{5 + 4.45})^2 \\
119.702 = s + 4.45 \\
115.292
\]

115 mph

Any B values that round to 10 receive a Beaufort number of 10. Using technology, find an approximate range of wind speeds, to the nearest mph, associated with a Beaufort number of 10.

\[
10 = 1.69 \sqrt{5 + 4.45} - 3.49 + 3.49 \\
10.51 = 1.69 \sqrt{5 + 4.45} \\
1.69 = \frac{1}{1.69} \\
(3.852)^2 = (\sqrt{5 + 4.45})^2 \\
14.838 = s + 4.45 - 4.45 \\
10.388 = s
\]
37 The Beaufort Wind Scale was devised by British Rear Admiral Sir Francis Beaufort, in 1805 based upon observations of the effects of the wind. Beaufort numbers, B, are determined by the equation $B = 1.69 \sqrt{s} + 4.45 - 3.49$, where s is the speed of the wind in mph, and B is rounded to the nearest integer from 0 to 12.

<table>
<thead>
<tr>
<th>Beaufort Number</th>
<th>Force of Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Calm</td>
</tr>
<tr>
<td>1</td>
<td>Light air</td>
</tr>
<tr>
<td>2</td>
<td>Light breeze</td>
</tr>
<tr>
<td>3</td>
<td>Gentle breeze</td>
</tr>
<tr>
<td>4</td>
<td>Moderate breeze</td>
</tr>
<tr>
<td>5</td>
<td>Fresh breeze</td>
</tr>
<tr>
<td>6</td>
<td>Steady breeze</td>
</tr>
<tr>
<td>7</td>
<td>Moderate gale</td>
</tr>
<tr>
<td>8</td>
<td>Fresh gale</td>
</tr>
<tr>
<td>9</td>
<td>Strong gale</td>
</tr>
<tr>
<td>10</td>
<td>Whole gale</td>
</tr>
<tr>
<td>11</td>
<td>Storm</td>
</tr>
<tr>
<td>12</td>
<td>Hurricane</td>
</tr>
</tbody>
</table>

Using the table above, classify the force of wind at a speed of 30 mph. Justify your answer.

\[
B = 1.69 \sqrt{s} + 4.45 - 3.49 = 3.49 \quad s = 30
\]

\[
1.69 \sqrt{s} + 4.45 - 3.49 \rightarrow 6.42 \quad B = 6 \quad \text{moderate breeze}
\]

Question 37 is continued on the next page.

Score 3: The student gave an incorrect classification and did not state the correct interval.
In 1946, the scale was extended to accommodate strong hurricanes. A strong hurricane received a B value of exactly 15. Algebraically determine the value of s, to the nearest mph.

$$15 = 1.69 \sqrt{5 + 4.45} - 3.49$$

$$\left(\frac{18.49}{1.69}\right)^2 = 11.45 = 59\text{ mph}$$

Any B values that round to 10 receive a Beaufort number of 10. Using technology, find an approximate range of wind speeds, to the nearest mph, associated with a Beaufort number of 10.

$$10 = 1.69 \sqrt{5 + 4.45} - 3.11$$

$$\left(\frac{13.49}{1.69}\right)^2 = 11.15 \Rightarrow 59 \text{ mph}$$

$$59 - 60 \text{ range}$$
The Beaufort Wind Scale was devised by British Rear Admiral Sir Francis Beaufort, in 1805 based upon observations of the effects of the wind. Beaufort numbers, B, are determined by the equation

$$B = 1.69 \sqrt{s} + 4.45 - 3.49,$$

where s is the speed of the wind in mph, and B is rounded to the nearest integer from 0 to 12.

<table>
<thead>
<tr>
<th>Beaufort Number</th>
<th>Force of Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Calm</td>
</tr>
<tr>
<td>1</td>
<td>Light air</td>
</tr>
<tr>
<td>2</td>
<td>Light breeze</td>
</tr>
<tr>
<td>3</td>
<td>Gentle breeze</td>
</tr>
<tr>
<td>4</td>
<td>Moderate breeze</td>
</tr>
<tr>
<td>5</td>
<td>Fresh breeze</td>
</tr>
<tr>
<td>6</td>
<td>Steady breeze</td>
</tr>
<tr>
<td>7</td>
<td>Moderate gale</td>
</tr>
<tr>
<td>8</td>
<td>Fresh gale</td>
</tr>
<tr>
<td>9</td>
<td>Strong gale</td>
</tr>
<tr>
<td>10</td>
<td>Whole gale</td>
</tr>
<tr>
<td>11</td>
<td>Storm</td>
</tr>
<tr>
<td>12</td>
<td>Hurricane</td>
</tr>
</tbody>
</table>

Using the table above, classify the force of wind at a speed of 30 mph. Justify your answer.

Calm

Question 37 is continued on the next page.

Score 2: The student received credit for the second part.
In 1946, the scale was extended to accommodate strong hurricanes. A strong hurricane received a B value of exactly 15. Algebraically determine the value of s, to the nearest mph.

\[
\begin{align*}
18.49 &= 1.69 \sqrt{s + 4.45} \\
10.9408 &= \sqrt{s + 4.45} \\
119.7017 &= s + 4 \\
&= 115 \text{ mph}
\end{align*}
\]

Any B values that round to 10 receive a Beaufort number of 10. Using technology, find an approximate range of wind speeds, to the nearest mph, associated with a Beaufort number of 10.

\[
10 \quad 13.49 = 7.98 \quad 63.71 =
\]

\[
59 \text{ mph} - 69 \text{ mph}
\]
The Beaufort Wind Scale was devised by British Rear Admiral Sir Francis Beaufort, in 1805 based upon observations of the effects of the wind. Beaufort numbers, B, are determined by the equation $B = 1.69 \sqrt{s} + 4.45 - 3.49$, where s is the speed of the wind in mph, and B is rounded to the nearest integer from 0 to 12.

<table>
<thead>
<tr>
<th>Beaufort Number</th>
<th>Force of Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Calm</td>
</tr>
<tr>
<td>1</td>
<td>Light air</td>
</tr>
<tr>
<td>2</td>
<td>Light breeze</td>
</tr>
<tr>
<td>3</td>
<td>Gentle breeze</td>
</tr>
<tr>
<td>4</td>
<td>Moderate breeze</td>
</tr>
<tr>
<td>5</td>
<td>Fresh breeze</td>
</tr>
<tr>
<td>6</td>
<td>Steady breeze</td>
</tr>
<tr>
<td>7</td>
<td>Moderate gale</td>
</tr>
<tr>
<td>8</td>
<td>Fresh gale</td>
</tr>
<tr>
<td>9</td>
<td>Strong gale</td>
</tr>
<tr>
<td>10</td>
<td>Whole gale</td>
</tr>
<tr>
<td>11</td>
<td>Storm</td>
</tr>
<tr>
<td>12</td>
<td>Hurricane</td>
</tr>
</tbody>
</table>

Using the table above, classify the force of wind at a speed of 30 mph. Justify your answer.

Steady breeze

Question 37 is continued on the next page.

Score 2: The student received credit for “steady breeze” and 115 with no work shown.
In 1946, the scale was extended to accommodate strong hurricanes. A strong hurricane received a B value of exactly 15. Algebraically determine the value of s, to the nearest mph.

Any B values that round to 10 receive a Beaufort number of 10. Using technology, find an approximate range of wind speeds, to the nearest mph, associated with a Beaufort number of 10.
37 The Beaufort Wind Scale was devised by British Rear Admiral Sir Francis Beaufort, in 1805 based upon observations of the effects of the wind. Beaufort numbers, \(B \), are determined by the equation \(B = 1.69 \sqrt{s} + 4.45 - 3.49 \), where \(s \) is the speed of the wind in mph, and \(B \) is rounded to the nearest integer from 0 to 12.

<table>
<thead>
<tr>
<th>Beaufort Number</th>
<th>Force of Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Calm</td>
</tr>
<tr>
<td>1</td>
<td>Light air</td>
</tr>
<tr>
<td>2</td>
<td>Light breeze</td>
</tr>
<tr>
<td>3</td>
<td>Gentle breeze</td>
</tr>
<tr>
<td>4</td>
<td>Moderate breeze</td>
</tr>
<tr>
<td>5</td>
<td>Fresh breeze</td>
</tr>
<tr>
<td>6</td>
<td>Steady breeze</td>
</tr>
<tr>
<td>7</td>
<td>Moderate gale</td>
</tr>
<tr>
<td>8</td>
<td>Fresh gale</td>
</tr>
<tr>
<td>9</td>
<td>Strong gale</td>
</tr>
<tr>
<td>10</td>
<td>Whole gale</td>
</tr>
<tr>
<td>11</td>
<td>Storm</td>
</tr>
<tr>
<td>12</td>
<td>Hurricane</td>
</tr>
</tbody>
</table>

Using the table above, classify the force of wind at a speed of 30 mph. Justify your answer.

\[
B = 1.69\sqrt{30} + 4.45 - 3.49 \\
B = 6.43
\]

Question 37 is continued on the next page.

Score 1: The student calculated an approximation of the Beaufort number correctly.
In 1946, the scale was extended to accommodate strong hurricanes. A strong hurricane received a B value of exactly 15. Algebraically determine the value of s, to the nearest mph.

\[
15 = 1.69 \sqrt{s + 4.45} - 3.49
\]

\[
11.51 = 1.69 \sqrt{s + 4.45}
\]

\[
s \approx 9.82 \quad \text{(to the nearest mph)}
\]

Any B values that round to 10 receive a Beaufort number of 10. Using technology, find an approximate range of wind speeds, to the nearest mph, associated with a Beaufort number of 10.
The Beaufort Wind Scale was devised by British Rear Admiral Sir Francis Beaufort, in 1805 based upon observations of the effects of the wind. Beaufort numbers, B, are determined by the equation $B = 1.69 \sqrt{s} + 4.45 - 3.49$, where s is the speed of the wind in mph, and B is rounded to the nearest integer from 0 to 12.

Beaufort Wind Scale

<table>
<thead>
<tr>
<th>Beaufort Number</th>
<th>Force of Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Calm</td>
</tr>
<tr>
<td>1</td>
<td>Light air</td>
</tr>
<tr>
<td>2</td>
<td>Light breeze</td>
</tr>
<tr>
<td>3</td>
<td>Gentle breeze</td>
</tr>
<tr>
<td>4</td>
<td>Moderate breeze</td>
</tr>
<tr>
<td>5</td>
<td>Fresh breeze</td>
</tr>
<tr>
<td>6</td>
<td>Steady breeze</td>
</tr>
<tr>
<td>7</td>
<td>Moderate gale</td>
</tr>
<tr>
<td>8</td>
<td>Fresh gale</td>
</tr>
<tr>
<td>9</td>
<td>Strong gale</td>
</tr>
<tr>
<td>10</td>
<td>Whole gale</td>
</tr>
<tr>
<td>11</td>
<td>Storm</td>
</tr>
<tr>
<td>12</td>
<td>Hurricane</td>
</tr>
</tbody>
</table>

Using the table above, classify the force of wind at a speed of 30 mph. Justify your answer.

\[
1.69 \sqrt{30 + 4.45} - 3.49 = 1.69 \sqrt{30.96}
\]

Strong gale

Question 37 is continued on the next page.
In 1946, the scale was extended to accommodate strong hurricanes. A strong hurricane received a B value of exactly 15. Algebraically determine the value of s, to the nearest mph.

Any B values that round to 10 receive a Beaufort number of 10. Using technology, find an approximate range of wind speeds, to the nearest mph, associated with a Beaufort number of 10.
37 The Beaufort Wind Scale was devised by British Rear Admiral Sir Francis Beaufort, in 1805 based upon observations of the effects of the wind. Beaufort numbers, \(B \), are determined by the equation \(B = 1.69 \sqrt{s} + 4.45 - 3.49 \), where \(s \) is the speed of the wind in mph, and \(B \) is rounded to the nearest integer from 0 to 12.

<table>
<thead>
<tr>
<th>Beaufort Number</th>
<th>Force of Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Calm</td>
</tr>
<tr>
<td>1</td>
<td>Light air</td>
</tr>
<tr>
<td>2</td>
<td>Light breeze</td>
</tr>
<tr>
<td>3</td>
<td>Gentle breeze</td>
</tr>
<tr>
<td>4</td>
<td>Moderate breeze</td>
</tr>
<tr>
<td>5</td>
<td>Fresh breeze</td>
</tr>
<tr>
<td>6</td>
<td>Steady breeze</td>
</tr>
<tr>
<td>7</td>
<td>Moderate gale</td>
</tr>
<tr>
<td>8</td>
<td>Fresh gale</td>
</tr>
<tr>
<td>9</td>
<td>Strong gale</td>
</tr>
<tr>
<td>10</td>
<td>Whole gale</td>
</tr>
<tr>
<td>11</td>
<td>Storm</td>
</tr>
<tr>
<td>12</td>
<td>Hurricane</td>
</tr>
</tbody>
</table>

Using the table above, classify the force of wind at a speed of 30 mph. Justify your answer.

\[
\left(1.69 \sqrt{30} + 4.45 - 3.49 \right)
\]

\[
9.4 \quad \rightarrow \quad 10 \quad \text{Whole gale}
\]

Question 37 is continued on the next page.

Score 0: The student did not show enough correct work to receive any credit.
In 1946, the scale was extended to accommodate strong hurricanes. A strong hurricane received a B value of exactly 15. Algebraically determine the value of s, to the nearest mph.

\[
\begin{align*}
15 &= 1.69 \sqrt{s + 4.45} - 3.49 \\
11.51 &= 1.69 \sqrt{s + 4.45} \\
10.767 &= \sqrt{s + 4.45} \\
115.93298 &= s + 4.45 \\
\end{align*}
\]

\[s = 120 \text{ mph}\]

Any B values that round to 10 receive a Beaufort number of 10. Using technology, find an approximate range of wind speeds, to the nearest mph, associated with a Beaufort number of 10.

\[
\begin{align*}
10 &= 1.69 \sqrt{s + 4.45} - 3.49 \\
5.9 &= \sqrt{s + 4.45} \\
59 - 60
\end{align*}
\]